Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 613–618 | Cite as

Potential Energy Surface of SF6

  • I. S. ChizhmakovaEmail author
  • A. V. NikitinEmail author
SPECTROSCOPY OF AMBIENT MEDIUM
  • 2 Downloads

Abstract

For the first time, a 15-dimensional analytical form was obtained and the potential energy of the SF6 molecule in the ground electronic state was found. An optimal grid of geometries was constructed, which, taking into account the full symmetry of the molecule, unambiguously determines the potential energy surface of the sixth order. Using the MP2 method with the cc-pVTZ base set, the potential energy surface of the fourth order was calculated.

Keywords:

potential energy surface SF6 octahedral group 

Notes

FUNDING

The work was supported by the Russian Science Foundation (grant no. 17-17-01170).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    S. Jesse, A. J. Pedraza, and J. D. Fowlkes, “Etching-enhanced ablation and the formation of a microstructure in silicon by laser irradiation in an SF6 atmosphere,” J. Mater. Res., No. 17, 1002–1013 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    W. M. Johnstone and W. R. Newell, “Absolute elastic differential cross sections for electron scattering from SF6,” J. Phys. B, No. 24, 473–487 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    N. H. Malik and A. H. Qureshi, “A review of electrical breakdown in mixtures of SF6 and other gases,” IEEE Trans. Electr. Insul. 14 (1), 11–13 (1979).Google Scholar
  4. 4.
    O. Hodnebrog, M. Etminan, J. S. Fuglestvedt, G. Marston, G. Myhre, C. J. Nielsen, K. P. Shine, and T. J. Wallington, “Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review,” Rev. Geophys. 51 (2), 300–378 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    A. R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, “Atmospheric lifetimes of long-lived halogenated species,” Science 259 (5092), 194–199 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    www.esrl.noaa.gov/?gmd/?hats/?data.html. Cited March 17, 2019.Google Scholar
  7. 7.
    M. Rey, I. S. Chizhmakova, A. V. Nikitin, and V. G. Tyuterev, “Understanding global infrared opacity and hot bands of greenhouse molecules with low vibrational modes from first-principles calculations: The case of CF4,” Phys. Chem. Chem. Phys. 20, 21008–21033 (2018).CrossRefGoogle Scholar
  8. 8.
    V. Boudon and D. Bermejo, “First high-resolution Raman spectrum and analysis of the ν5,” J. Mol. Spectrosc. 213, 139–144 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    V. Boudon, G. Pierre, and H. Burger, “High-resolution spectroscopy and analysis of the n 4 bending region of SF6 near 615 cm–1,” J. Mol. Spectrosc. 205, 304–311 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    G. Nagarajan and D. C. Brinkley, “Statistical thermodynamics enthalpy, free energy, entropy, and heat capacity of some hexafluorides of octahedral symmetry,” Z. Naturforsch., A: Phys. Sci., 1658–1665 (1971).Google Scholar
  11. 11.
    V. P. Spiridonov, Y. I. Tarasov, B. K. Novosadov, O. Y. Nikitin, and I. V. Maslov, “A practical method for diffraction analysis of equilibrium geometries molecules without refined force fields,” J. Mol. Struct., 463–470 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    H. -J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schutz, P. Celani, W. Gyorffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Koppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. III. Miller, and M. E. Mura, MOLPRO, version 2009.1, a package of ab initio programs. http://www.molpro.net. Cited March, 17, 2019.Google Scholar
  13. 13.
    R. J. Bartlett, “Many-body perturbation theory and coupled cluster theory for electron correlation in molecules,” Ann. Rev. Phys. Chem. 32, 359–401 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    M. Head-Gordon, J. A. Pople, and M. J. Frisch, “MP2 energy evaluation by direct methods,” Chem. Phys. Lett. 153 (6), 503–506 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    W. Eisfeld, “Highly accurate determination of the electron affinity of SF6 and analysis of structure and photodetachment spectrum of SF6,” J. Chem. Phys., No. 134, 054303 (2011).Google Scholar
  16. 16.
    B. R. Miller and M. Fink, “Mean amplitudes of vibration of SF6 and intramolecular multiple scattering,” J. Chem. Phys., No. 75, 5326–5328 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Nikitin, M. Rey, and V. G. Tyuterev, “Rotational and vibrational energy levels of methane calculated from a new potential energy surface,” Chem. Phys. Lett. 501, 179–186 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Nikitin, “Calculation of vibrational energy levels of symmetric molecules from potential energy surface,” Opt. Atmos. Okeana 28 (5), 379–390 (2015).Google Scholar
  19. 19.
    B. I. Zhilinskii, V. I. Perevalov, and V. G. Tyuterev, Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra (Nauka, Novosibirsk, 1987), p. 1–13 [in Russian].Google Scholar
  20. 20.
    L. Halonen and M. S. Child, “A local mode model for tetrahedral molecules,” Mol. Phys. 46, 239–255 (1982).ADSCrossRefGoogle Scholar
  21. 21.
    P. N. Schatz and D. F. Hornig, “Bond moments and derivatives in CF4, SiF4, and SF6 from infrared intensities,” J. Chem. Phys. 21 (9), 1516–1530 (1953).ADSCrossRefGoogle Scholar
  22. 22.
    M. Fernandez-Gomez and J. J. Lopez-Gonzalez, “Calculation of internal valence force constants for XY6(Oh) octahedral molecules,” J. Mol. Struct. 220, 287–300 (1990).ADSCrossRefGoogle Scholar
  23. 23.
    T. C. W. F. Pistorius, “Potential field and force constants of octahedral molecules,” J. Chem. Phys. 29 (6), 1328–1332 (1958).ADSCrossRefGoogle Scholar
  24. 24.
    V. G. Tyuterev, S. A. Tashkun, M. Rey, R. V. Kochanov, A. V. Nikitin, and T. Delahaye, “Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations,” J. Phys. Chem. 117, 13779–13805 (2013).CrossRefGoogle Scholar
  25. 25.
    M. Rey, A. V. Nikitin, Y. Babikov, and V. G. Tyuterev, “TheoReTS—An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces,” J. Mol. Spectrosc. 327, 138–158 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations