Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 5, pp 590–596 | Cite as

Numerical Simulation of the Adaptive Control System of the Composite Primary Mirror of a Large-Size Space Telescope

  • E. K. SamyginaEmail author
  • A. I. KlemEmail author
OPTICAL INSTRUMENTATION
  • 10 Downloads

Abstract

We describe a mathematical model developed for the adaptive control system of the composite primary mirror of a telescope similar in characteristics to the international project of the Millimetron space telescope. Results of numerical simulation of the adaptive control system with allowance for restrictions of the hardware–software implementation are presented. According to results of the simulation, the error of maintaining the shape of the composite primary mirror is estimated. The estimate corroborates the applicability of the mathematical model.

Keywords:

space telescope composite primary mirror multiaxis servodrives adaptive control system 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    http://millimetron.ru/index.php/ru/ (Cited January 15, 2018).Google Scholar
  2. 2.
    N. S. Kardashev, I. D. Novikov, V. N. Lukash, S. V. Pilipenko, E. V. Mikheeva, D. V. Bisikalo, D. Z. Wiebe, A. G. Doroshkevich, A. V. Zasov, I. I. Zinchenko, P. B. Ivanov, V. I. Kostenko, T. I. Larchenkova, S. F. Likhachev, I. F. Malov, V. M. Malofeev, A. S. Pozanenko, A. V. Smirnov, A. M. Sobolev, A. M. Cherepashchuk, and Yu. A. Shchekinov, “Review of scientific topics for the Millimetron space observatory,” Phys.–Usp. 57 (12), 1199–1228 (2014).  https://doi.org/10.3367/UFNe.0184.201412c.1319 CrossRefGoogle Scholar
  3. 3.
    S. N. Sayapin, Yu. N. Artemenko, and N. V. Myshonkova, “Problemy pretsizionnosti kriogennogo kosmicheskogo teleskopa observatorii "Millimetron”, Vestn. MGTU, Ser. Estestv. Nauki, No. 2, 50–76 (2014).Google Scholar
  4. 4.
    V. V. Sychev and A. I. Klem, “Adaptation problems in the space telescope of the Millimetron observatory,” Atmos. Oceanic Opt. 30 (4), 389–398 (2017).CrossRefGoogle Scholar
  5. 5.
    V. V. Sychev and A. I. Klem, “Algorithm for controlling a multielement mirror using the Millimetron space telescope as an example,” Atmos. Oceanic Opt. 31 (6), 667–675 (2018).Google Scholar
  6. 6.
    V. V. Sychev and A. I. Klem, “Metrological control of the spatial positions of elements of the Millimetron telescope primary mirror,” Atmos. Oceanic Opt. 31 (6), 676–681 (2018).Google Scholar
  7. 7.
    E. K. Samygina, L. N. Rassudov, and A. P. Balkovoi, “Comparison of linear position and velocity control strategies for a direct servodrive,” in 25th Intern. Workshop on Electric Drives: Optimization in Control of Electric Drives (Moscow, 2018), p. 1–5.  https://doi.org/10.1109/IWED.2018.8321382
  8. 8.
    S. D. Fedorchuk and M. Yu. Arkhipov, “On the assurance of the design accuracy of the space radio telescope RadioAstron,” Cosmic. Res. 52 (5), 379–381 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    Hongwei Fang, Changliang Xia, Zhengwei Chen, and Xile Wei, “Position servo control of brushless DC motor based on the second discrete filter,” in IEEE Intern. Conf. on Robotics and Biomimetics. Sanya, 2007, p. 1838–1842.  https://doi.org/10.1109/ROBIO.2007.4522446
  10. 10.
    L. Biagiotti, C. Melchiorri, and R. Zanasi, “Dynamic filters for online planning optimal trajectories,” in Motion Control Convengo Nazionale ANIPLA (Milano, 2010).Google Scholar
  11. 11.
    C. Guarino Lo Bianco and F. Ghilardelli, “A discrete-time filter for the generation of signals with asymmetric and variable bounds on velocity, acceleration, and jerk,” IEEE Trans. Ind. Electron. Control Instrum. 61 (8), 4115–4125 (2014).CrossRefGoogle Scholar
  12. 12.
    E. K. Samygina, “Enhancement of servodrive control system for exact tracking in the extended speed range,” in X Intern. Conf. on Electrical Power Drive Systems (Novochrekassk, 2018), p. 123–126.Google Scholar
  13. 13.
    J. Wang, J. Wu, C. Gan, and Q. Sun, “Comparative study of flux-weakening control methods for PMSM drive over wide speed range,” 19th Intern. Conf. on Electrical Machines and Systems, Chiba, 2016, p. 1–6.Google Scholar
  14. 14.
    L. N. Rassudov and A. P. Balkovoi, “Dynamic model exact tracking control of a permanent magnet synchronous motor,” in Proc. Intern. Siberian Conf. on Control and Communications (Omsk, 2015), p. 1–4.Google Scholar
  15. 15.
    C. Sheikholeslami, J. Goers, and B. Kramer, “Modern motion control strategies obtain consistent and better performance in uncertain conditions,” ACS Motion Control, 1–8 (2010).Google Scholar
  16. 16.
    J. Böcker, S. Beineke, and A. Bähr, “On the control bandwidth of servo drives,” in Proc. 13th Europ. Conf. on Power Electronics and Applications (Barcelona, 2009), p. 1–10.Google Scholar
  17. 17.
    Torque motor (direct drive motor): Technical information. https://www.hiwin.com/pdf/torque_motor_rotary_ tables.pdf (Cited January 15, 2018).Google Scholar
  18. 18.
    M. N. Sokol’skii, Tolerances and Quality of Optical Images (Mashinostroenie, Leningrad, 1989) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow Power Engineering InstituteMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.Astro Space Center, Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations