Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 213–219 | Cite as

Software-Controlled High-Resolution Laser Photoacoustic Spectrometer: Techniques and Programs for Measuring and Processing Weak Absorption Spectra of Atmospheric Gases

  • V. A. KapitanovEmail author
  • K. Yu. OsipovEmail author


A software-controlled photoacoustic spectrometer designed on the basis of a TEC-520 diode laser (output power 30 mW, coarse tuning range 6060–6600 cm−1, bandwidth ∼5 × 10–5 cm−1, fine tuning range is 0–2.5 cm−1), WS-UIR laser wavelength meter (relative error Δλ/λ ∼ 10–8), and resonance photoacoustic detector with a threshold sensitivity of ∼3 × 10–10 W cm−1 Hz−1/2 is described, as well as techniques and software developed for measurements and spectra processing. The water vapor spectra are analyzed.


absorption spectrum diode laser photoacoustic detector mirror modulator 



We are grateful to Yu.N. Ponomarev and I.V. Ptashnik for assistance in the purchase of equipment and support in the research, A.E. Protasevich for his help in programming the line profile model, and A.N. Kuryak for assistance in the design and manufacture of DPAD.

This work was partly supported by Russian Science Foundation (project no. 16-17-10096 (purchase of the diode laser, piezoelectric amplifier, and vacuum sensor and experiments) and Programs II.10.3 and II.10.3.6 (purchase of the wavelength meter, manufacture of amplifiers and power sources, and experiments).


  1. 1.
    E. L. Kerr and J. G. Atwood, “The laser illuminated spectrophone: A method for measurement of weak absorptivity in gases at laser wavelengths,” Appl. Opt. 7 (5), 915–921 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    A. B. Antipov, V. A. Kapitanov, Yu. N. Ponomarev, and V. A. Sapozhnikova, Photoacoustic Technique in Laser Spectroscopy of Molecular Gases (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  3. 3.
    V. P. Zharov and V. S. Letokhov, Photoacoustic Laser Spectroscopy (Nauka, Moscow, 1984) [in Russian].Google Scholar
  4. 4.
    A. C. Tam, “Photo acoustic: Spectroscopy and other application,” in Ultrasensitive Laser Spectroscopy, Ed. by D.S. Kliger (Academic Press, New York, 1983).Google Scholar
  5. 5.
    G. A. West, J. J. Barret, D. R. Siebert, and K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54, 797 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    C. F. Dewey, “Opto-Acoustic Spectroscopy,” Opt. Eng. 13 (6), 483–488 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    L. G. Rosengren, “Optimal optoacoustic detector design,” Appl. Opt. 14 (8), 1960–1976 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60 (7), R83–R121 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    P. L. Meyer and M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61 (7), 1779–1807 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    V. A. Kapitanov and Yu. N. Ponomarev, “High resolution ethylene absorption spectrum between 6035 and 6210 cm–1,” Appl. Phys., B 90 (2), 235–241 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Kapitanov, K. Yu. Osipov, A. E. Protasevich, and Yu. N. Ponomarev, “Collisional parameters of N2 broadened methane lines in the R9 multiplet of the 2ν3 band. Multispectrum fittings of the overlapping spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 113 (16), 1985–1992 (2012).ADSCrossRefGoogle Scholar
  12. 12. lasers/littman/tec_500__tec_520_littmanmetcalf_laser_ system_lion.html. Cited June, 15, 2018.Google Scholar
  13. 13. pc/pilot_pc_500ma3000ma.html. Cited June, 15, 2018.Google Scholar
  14. 14.
    K.Yu. Osipov and V.A. Kapitanov, Precision mirror optical disk for modulator, Know-how 02-2014, November 4, 2014, Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Science.Google Scholar
  15. 15. HighFinesse_Wavemeter_web.pdf. Cited June, 10, 2018.Google Scholar
  16. 16. Cited April 10, 2018.Google Scholar
  17. 17. global/lang/ru/pg/1/q/ni%20pci%206251/. Cited April 10, 2018.Google Scholar
  18. 18.
    URL: 02/SL-03_e_2014.pdf. Cited April 10, 2018.Google Scholar
  19. 19.
    V. Zeninary, V. A. Kapitanov, Yu. N. Ponomarev, and D. Courtois, “Design and characteristics of a differential helmholtz resonant photoacoustic cell for infrared gas detection,” Infrared Phys. Technol. 40, 1–23 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    V. A. Kapitanov, Yu. N. Ponomarev, K. Song, H.‑K. Cha, and J. Lee, “Resonance photoacoustic spectroscopy and gas analysis of gaseous flow at reduced pressure,” Appl. Phys., B 73, 745–750 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    V. A. Kapitanov, Yu. N. Ponomarev, I. S. Tyryshkin, and A. P. Rostov, “Two-channel opto-acoustic diode laser spectrometer and fine structure of methane absorption spectra in 6070–6180 cm–1 region,” Spectrochim. Acta A 66, 811–818 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    I. V. Sherstov, V. A. Kapitanov, B. G. Ageev, A. I. Karapuzikov, and Yu. N. Ponomarev, “Laser optoacoustic leak detector,” Atmos. Oceanic Opt. 17 (2-3), 102–105 (2004).Google Scholar
  23. 23. pdf. Cited April 10, 2018.Google Scholar
  24. 24. Cited June 15, 2018.Google Scholar
  25. 25.
    J. Tennyson, P. F. Bernath, A. Campargue, A. G. Csaszar, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. D. de Vizia, L. Gianfrani, J. M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. H. Ngo, and O. L. Polyansky, Recommended isolated-line profile for representing high-resolution spectroscopic transitions. IUPAC Technical Report (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations