Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 227–233 | Cite as

Effectiveness of Combined Laser and Gas Chromatographic Remote Detection of Traces of Explosives

  • M. N. Baldin
  • S. M. BobrovnikovEmail author
  • A. B. Vorozhtsov
  • E. V. Gorlov
  • V. M. Gruznov
  • V. I. ZharkovEmail author
  • Yu. N. Panchenko
  • M. V. Pryamov
  • G. V. Sakovich
OPTICAL INSTRUMENTATION
  • 7 Downloads

Abstract

The results of remote detection of objects containing explosives with a lidar detector of traces of explosives in combination with a portable express gas chromatograph are presented. It is shown that the lidar detector of traces of explosives confidently detects the simulators of TNT, hexogen, and PETN from a distance of 5 m when sounding the surface of a sample. Laser action on the sample surface causes desorption of vapors, which are reliably detected by the gas chromatograph. It is shown that the joint use of the laser sounding and gas chromatography techniques makes it possible to increase the reliability of detection of explosives. The prospects of using the gas chromatography in the development of laser sounding techniques are determined.

Keywords:

explosives detection lidar gas chromatograph 

Notes

ACKNOWLEDGMENTS

The work was supported by Siberian Branch of the Russian Academy of Sciences (Complex Program of Fundamental Research, project no. 0385-2018-0014), the Russian Foundation for Basic Research (grant no. 16-29-09474), and President of the Russian Federation (grant no. MK-619.2018.8, agreement no. 075-02-2018-798).

REFERENCES

  1. 1.
    C. Bauer, P. Geiser, J. Burgmeier, J. Holl, and W.  Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys., B 85 (2-3), 251–256 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    A. Mukherjee, S. Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49 (11), 2072–2078 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    A. I. Karapuzikov, Sh. Sh. Nabiev, A. I. Nadezhdinskii, and Yu. N. Ponomarev, “Lazer methods of detection of explosive matter vapors in the open atmosphere: analytical possibilities of counteracting the terror threats,” Atmos. Ocean. Opt. 24 (2), 133–143 (2011).CrossRefGoogle Scholar
  4. 4.
    C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Aernecke, “Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence,” Opt. Express 19 (19), 18671–18677 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    L. A. Skvortsov, Laser Techniques for Remote Detection of Chemical Compounds on Object Surfaces (Tekhnosfera, Moscow, 2015) [in Russian].Google Scholar
  6. 6.
    S. M. Bobrovnikov and E. V. Gorlov, “Lidar method for remote detection of vapors of explosives in the atmosphere,” Atmos. Oceanic Opt. 24 (3), 235–241 (2011).CrossRefGoogle Scholar
  7. 7.
    S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Remote detection of traces of high-energy materials on an ideal substrate using the Raman effect,” Atmos. Ocean. Opt. 30 (6), 604–608 (2017).CrossRefGoogle Scholar
  8. 8.
    B. G. Ageev, A. V. Klimkin, A. N. Kuryak, K. Yu. Osipov, and Yu. N. Ponomarev, “Remote detector of hazardous substances based on a tunable 13S16O2 laser,” Atmos. Ocean. Opt. 30 (4), 337–341 (2017).CrossRefGoogle Scholar
  9. 9.
    S. M. Bobrovnikov, A. B. Vorozhtsov, E. V. Gorlov, V. I. Zharkov, E. M. Maksimov, Yu. N. Panchenko, and G. V. Sakovich, “Lidar detection of explosive vapors in the atmosphere,” Izv. Vyssh. Ucgeb. Zaved., Fiz. 58 (9), 14–21 (2015).Google Scholar
  10. 10.
    S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, Yu. N. Panchenko, V. A. Aksenov, A. V. Kikhtenko, and M. I. Tivileva, “Remote detector of explosive traces,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92922 (2014).Google Scholar
  11. 11.
    S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, and Yu. N. Panchenko, “Remote detection of traces of high energetic materials,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 96803 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. N. Baldin
    • 1
  • S. M. Bobrovnikov
    • 2
    • 3
    Email author
  • A. B. Vorozhtsov
    • 3
    • 6
  • E. V. Gorlov
    • 2
    • 3
  • V. M. Gruznov
    • 1
    • 4
  • V. I. Zharkov
    • 2
    Email author
  • Yu. N. Panchenko
    • 5
  • M. V. Pryamov
    • 1
  • G. V. Sakovich
    • 6
  1. 1.Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch, Russian Academy of Sciences NovosibirskRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.Institute of High Current Electronics, Siberian Branch, Russian Academy of SciencesTomskRussia
  6. 6.Institute for Problems of Chemical and Energetic Technologies, Siberian Branch, Russian Academy of SciencesBiyskRussia

Personalised recommendations