Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 642–649 | Cite as

Modified Beam-Splitting 1 (MBS-1) Algorithm for Solving the Problem of Light Scattering by Nonconvex Atmospheric Ice Particles

  • D. N. TimofeevEmail author
  • A. V. Konoshonkin
  • N. V. Kustova
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

A new algorithm for solving the problem of light scattering by nonconvex crystals typical for cirrus clouds is presented. It is based on the beam tracing algorithm for convex particles (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences). The new algorithm is applied for solving the problem of light scattering by hollow-column particles and aggregates of hexagonal ice columns. It is an opensource freely available algorithm.

Keywords

algorithm nonconvex particles aggregates physical optics geometrical optics cirrus clouds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.-N. Liou, An Introduction to Atmospheric Radiation (Acad. Press, San Diego, 2002).Google Scholar
  2. 2.
    K. S. Kunz and R. J. Luebbers, Finite Difference Time Domain Method for Electromagnetics (FL CRC Press, Boca Raton, FL, 1993).Google Scholar
  3. 3.
    A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1998).zbMATHGoogle Scholar
  4. 4.
    E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    M. A. Yurkin and A. G. Hoekstra, “The discretedipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Yurkin and A. G. Hoekstra, User manual for the discrete dipole approximation code ADDA 1.3b4. http://a-dda.googlecode. com/svn/tags/rel_1.3b4/doc/manual.pdf (Cited July 27, 2017).Google Scholar
  8. 8.
    Q. Cai and K.-N. Liou, “Polarized light scattering by hexagonal ice crystals: Theory,” Appl. Opt. 21, 3569–3580 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Ice-Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  10. 10.
    A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    D. N. Romashov, “Backscattering phase matrix of monodisperse ensembles of hexagonal water ice crystals,” Atmos. Ocean. Opt. 12 (5), 376–384 (1999).Google Scholar
  12. 12.
    A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Am. A. 20, 2071–2080 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “The physics-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm,” Atmos. Ocean. Opt. 28 (5), 441–447 (2015).CrossRefGoogle Scholar
  16. 16.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 2. Comparison with the ray tracing algorithm,” Atmos. Ocean. Opt. 28 (5), 448–454 (2015).CrossRefGoogle Scholar
  17. 17.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38 (15), 2881–1884 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Peculiarities of the depolarization ratio in lidar signals for randomly oriented ice crystals of cirrus clouds,” Opt. Atmos. Okeana 26 (5), 385–387 (2013).Google Scholar
  19. 19.
    A. Konoshonkin, Z. Wang, A. Borovoi, N. Kustova, D. Liu, and C. Xie, “Backscatter by azimuthally oriented ice crystals of cirrus clouds,” Opt. Express. 24 (18), A1257–A1268 (2016).Google Scholar
  20. 20.
    A. V. Konoshonkin, “Simulation of the scanning lidar signals for a cloud of monodisperse quasi-horizontal oriented particle,” Opt. Atmos. Okeana 29 (12), 1053–1060 (2016).Google Scholar
  21. 21.
    A. V. Konoshonkin, “Optical characteristics of irregular ice columns,” Atmos. Ocean. Opt. 30 (6), 508–516 (2017).CrossRefGoogle Scholar
  22. 22.
    ftp://ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/(Cited January 30, 2018).Google Scholar
  23. 23.
    A. D. Aleksandrov, A. L. Verner, V. I. Ryzhik, Stereometry: Geometry in Space (Alfa, Visaginas, 1998) [in Russian].Google Scholar
  24. 24.
    I. Sutherland and G. Hodgman, “Reentrant polygon clipping,” Commun. ACM 17, 32–42 (1974).CrossRefzbMATHGoogle Scholar
  25. 25.
    C. Hoare, “Quicksort,” Comput. J. 5 (1), 16–19 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Beam-Splitting-concave. https://github.com/Heart-Under-Blade/Beam-Splitting-concave/(Cited January 30, 2018).Google Scholar
  27. 27.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates,” Atmos. Ocean. Opt. 28 (1), 74–81 (2015).CrossRefGoogle Scholar
  28. 28.
    P. Yang, L. Bi, B. A. Baum, K. N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, “Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm,” J. Atmos. Sci. 70, 330–347 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystal,” J. Atmos. Sci. 53 (19), 2813–2825 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. N. Timofeev
    • 1
    Email author
  • A. V. Konoshonkin
    • 1
    • 2
  • N. V. Kustova
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk National Research State UniversityTomskRussia

Personalised recommendations