Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 553–563 | Cite as

Results of Acoustic Diagnostics of Atmospheric Boundary Layer in Estimation of the Turbulence Effect on Laser Beam Parameters

  • S. L. OdintsovEmail author
  • V. A. Gladkikh
  • A. P. Kamardin
  • I. V. Nevzorova
Optical Waves Propagation


The coherence length and possible broadening of a laser beam in the atmospheric boundary layer under the effect of random inhomogeneities of the refractive index are estimated from experimental data of remote acoustic sounding. The possibility of significant loss of coherence and noticeable broadening of the laser beam due to turbulence in nighttime are noted.


laser radiation atmospheric boundary layer turbulent distortions propagation sodar structural characteristics of refractive index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Asanov, V. V. Belov, A. D. Bulygin, Yu. E. Geints, V. V. Dudorov, A. A. Zemlyanov, A. B. Ignat’ev, F.Yu.Kanev, V. V. Kolosov, P. A. Konyaev, V.P.Lukin, G. G. Matvienko, V. V. Morozov, V. V. Nosov, Yu. N. Ponomarev, I. V. Ptashnik, and M. V. Tarasenkov, “Optical model of the Earth’s atmosphere for intense laser emission in the near and midinfrared spectral ranges,” Opt. Atmos. Okeana 28 (4), 338–345 (2015).Google Scholar
  2. 2.
    S. V. Asanov, Yu. E. Geints, A. A. Zemlyanov, A. B. Ignat’ev, G. G. Matvienko, V. V. Morozov, and A. V. Tarasenkova, “Forecast of intense near-and mid-IR laser radiation propagation along slant atmospheric paths,” Atmos. Ocean. Opt. 29 (4), 315–324 (2016).CrossRefGoogle Scholar
  3. 3.
    V. P. Lukin, “Possibilities of aiming optical beams through turbulent atmosphere,” Atmos. Ocean. Opt. 18 (1-2), 66–76 (2005).Google Scholar
  4. 4.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Method for atmospheric turbulence profile measurement from observation of laser guide stars,” Atmos. Ocean. Opt. 30 (2), 176–183 (2017).CrossRefGoogle Scholar
  5. 5.
    V. L. Mironov, Laser Beam Propagation in a Turbulent Atmosphere (Nauka, Novosibirsk, 1981) [in Russian].Google Scholar
  6. 6.
    Laser Beam Propagation in the Atmosphere, Ed. by J. Strohbehn (Springer, Berlin; Heidelberg 1978).Google Scholar
  7. 7.
    V. A. Gladkikh and S. L. Odintsov, “Calibration of Volna-3 sodar,” Atmos. Ocean. Opt. 14 (12), 1050–1053 (2001).Google Scholar
  8. 8.
    A. P. Kamardin and S. L. Odintsov, “Height profiles of the structure characteristic of air temperature in the atmospheric boundary layer from sodar measurements,” Atmos. Ocean. Opt. 30 (1), 33–38 (2017).CrossRefGoogle Scholar
  9. 9.
    A. P. Kamardin and S. L. Odintsov, “Method for automatic absolute calibration of sodar measurement channels,” Proc. SPIE 9680, 96805 (2015).ADSGoogle Scholar
  10. 10.
    I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Some methodological aspects of sodar measurements of structural characteristic of temperature pulsation,” in Proc. 10th Int. Symp. on Acoust. Remote Sensing of the Atmosphere and Oceans, 27 November–1 December, 2000, Auckland, New Zealand, p. 312–315.Google Scholar
  11. 11.
    A. P. Kamardin, V. A. Gladkikh, S. L. Odintsov, and V. A. Fedorov, “Doppler meteorological acoustic locator (sodar) "VOLNA-4M-ST”,” Pribory, No. 4, 37–44 (2017).Google Scholar
  12. 12.
    V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory, No. 7, 21–25 (2009).Google Scholar
  13. 13.
    V. A. Gladkikh and S. L. Odintsov, “Profiles of the structure characteristic of temperature in the atmospheric surface layer,” Proc. SPIE 9680, 9680–60 (2015).ADSGoogle Scholar
  14. 14.
    V. A. Gladkikh, V. P. Mamyshev, and S. L. Odintsov, “Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer,” Atmos. Ocean. Opt. 28 (5), 426–435 (2015).CrossRefGoogle Scholar
  15. 15.
    N. N. Botygina, P. G. Kovadlo, E. A. Kopylov, V. P. Lukin, M. V. Tuev, and A. Yu. Shikhovtsev, “Estimation of the astronomical seeing at the Large Solar vacuum telescope site from optical and meteorological measurements,” Atmos. Ocean. Opt. 27 (2), 142–146 (2014).CrossRefGoogle Scholar
  16. 16.
    L. V. Antoshkin, N. N. Botygina, L. A. Bolbasova, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, P.G.Kovadlo, D. Yu. Kolobov, A. V. Kudryashov, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, S. A. Chuprakov, A. A. Selin, and A. Yu. Shikhovtsev, “Adaptive optics system for solar telescope operating under strong atmospheric turbulence,” Atmos. Ocean. Opt. 30 (3), 291–299 (2017).CrossRefGoogle Scholar
  17. 17.
    P. G. Kovadlo, Doctoral Dissertation in Mathematics and Physics (Irkutsk, 2001).Google Scholar
  18. 18.
    V. P. Lukin, S. P. Ilyasov, V. V. Nosov, S. L. Odintsov, and Yu. A. Tillaev, “The study of astroclimate of the South Siberia and Central Asia regions,” Opt. Atmos. Okeana 22 (10), 973–980 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. L. Odintsov
    • 1
    Email author
  • V. A. Gladkikh
    • 1
  • A. P. Kamardin
    • 1
  • I. V. Nevzorova
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations