Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 626–634 | Cite as

Comparison of Distributions of Atmospheric Gas Admixture Concentrations Measured by Remote and In Situ Instruments over the Russian Sector of the Arctic

  • O. Yu. Antokhina
  • P. N. Antokhin
  • V. G. Arshinova
  • M. Yu. Arshinov
  • B. D. BelanEmail author
  • S. B. Belan
  • V. V. Belov
  • Yu. V. Gridnev
  • D. K. Davydov
  • G. A. Ivlev
  • A. V. Kozlov
  • K. S. Law
  • Ph. Nédélec
  • J. -D. Paris
  • T. M. Rasskazchikova
  • D. E. Savkin
  • D. V. Simonenkov
  • T. K. Sklyadneva
  • G. N. Tolmachev
  • A. V. Fofonov
Inverse Problems of Atmospheric and Ocean Optics
  • 1 Downloads

Abstract

Data from aircraft and satellite sensing at the ocean–land boundary in the region of the Kara Sea in October 2014 are compared, using 11 and 7 profiles, which were synchronously measured over a continental part and ocean, respectively. It was found that the satellite usually overestimates the CH4 and CO2 concentrations in the 0–8-km layer over the continental part of the Arctic region and underestimates them over the ocean. Over continent, the satellite overestimates the methane concentrations by 28 ppb in the boundary layer and by much more in the middle (182 ppb) and upper (113 ppb) troposphere. Over ocean, the satellite measurements are, on average, lower by 37 ppb in the boundary layer, by 73 ppb in the middle troposphere, and by 71 ppb in the upper troposphere. Over continent, the discrepancy in CO2 concentrations, measured with different instruments, is, on average, 18.2 ppm in the boundary layer and can vary from 3.2 to 26.5 ppm. In the middle troposphere (4 km), the average differences decrease to 10.8 ppm, with the range of differences even increasing somewhat, to 0.6–25.5 ppm. In the upper troposphere (8 km), the average difference in measurements between the instruments decreases to 2.8 ppm. The underestimation turns out to be greater in amplitude over the ocean. It is noteworthy that the comparison yielded acceptable results for CO and O3.

Keywords

Arctic atmosphere air vertical distribution gases remote sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. G. Shepherd, “Effects of a warming Arctic,” Science 353 (6303), 989–990 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    O. M. Johannessen, S. I. Kuzmina, L. P. Bobylev, and M. W. Miles, “Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalisation,” Tellus A 68, 28234 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    S. R. Arnold, K. S. Law, C. A. Brock, J. L. Thomas, S. M. Starkweather, K. Salzen, A. Stohl, S. Sharma, M. T. Lund, M. G. Flanner, T. Petaja, H. Tanimoto, J. Gamble, J. E. Dibb, M. Melamed, N. Johnson, M. Fider, V.-P. Tynkkynen, A. Baklanov, S. Eckhardt, S. A. Monks, J. Browse, and H. Bozem, “Arctic air pollution: Challenges and opportunities for the next decade,” Elementa: Sci. Atmos., No. 4, 16 (2016).Google Scholar
  4. 4.
    N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Njgaard, and H. Skov, “Wildfires in northern Eurasia affect the budget of black carbon in the Arctic—a 12-year retrospective synopsis (2002–2013),” Atmos. Chem. Phys. 16 (12), 7587–7604 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    A. P. Nagurnyi, “Analysis of measurement data on carbon dioxide concentration in the near-ice surface atmosphere at North Pole-35 drifting ice station (2007–2008),” Rus. Meteorol. Hydrol. 35 (9), 619–623, 2010.Google Scholar
  6. 6.
    A. P. Nagurnyi and A. P. Makshtas, “Methane concentration in the atmospheric boundary layer from the measurements at North Pole-36 and North Pole-39 drifting ice stations,” Rus. Meteorol. Hydrol. 41 (3), 199–204 (2016).CrossRefGoogle Scholar
  7. 7.
    I. I. Pipko, S. P. Pugach, and I. P. Semiletov, “CO2 dynamics on the shelf of the East Siberian Sea,” Rus. Meteorol. Hydrol. 35 (9), 624–632 (2010).CrossRefGoogle Scholar
  8. 8.
    I. P. Semiletov, N. E. Shakhova, I. I. Pipko, S. P. Pugach, A. N. Charkin, O. V. Dudarev, D. A. Kosmach, and S. Nishino, “Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacebt part of Laptev Sea,” Biogeosci. 10 (9), 5977–5996 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    J. Yu, Z. Xie, L. Sun, H. Kang, P. He, and G. Xing, “δ13C–CH4 reveals CH4 variations over oceans from mid-latitudes to the Arctic,” Sci. Rep. 5 (13760) (2015).Google Scholar
  10. 10.
    M. Giamarelou, K. Eleftheriadis, S. Nyeki, K. Torseth, and G. Biskos, “Indirect evidence of the composition of nucleation mode atmospheric particles in the high Arctic,” J. Geophys. Res.: Atmos. 121 (2), 965–975 (2016).ADSGoogle Scholar
  11. 11.
    C. L. Myhre, B. Ferre, M. Platt, A. Silyakova, O. Hermansen, G. Allen, I. Pisso, N. Schmidbauer, A. Stohl, J. Pitt, P. Jansson, J. Greinert, C. Percival, A. M. Fjaeraa, O’Shea, M. Gallagher, M. L. Breton, K. N. Bower, S. J. B. Bauguitte, S. Dalsoren, S. Vadakkepuliyambatta, R. E. Fisher, E. G. Nisbet, D. Lowry, G. Myhre, J. A. Pyle, M. Cain, and J. Mienert, “Extensive release of methane from Arctic seabed west of Svalbard during summer 2014,” Geophys. Res. Lett. 43 (9), 4624–4631 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    B. Quennehen, A. Schwarzenboeck, J. Schmale, J. Schneider, H. Sodemann, A. Stohl, G. Ancellet, S. Crumeyrolle, and K. S. Law, “Physical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign,” Atmos. Chem. Phys. 11 (21), 10 947–10 963 (2011).Google Scholar
  13. 13.
    C. D. Zwaaftink, H. Grythe, H. Skov, and A. Stohl, “Substantial contribution of northern high-latitude sources to mineral dust in the Arctic,” J. Geophys. Res.: Atmos. 121 (23), 13678–13697 (2016).ADSGoogle Scholar
  14. 14.
    J. P. Burrows and R. Martin, “Satellite observations of tropospheric trace gases and aerosols. Introduction,” IGAC Newslett., No. 35, 2–7 (2007).Google Scholar
  15. 15.
    J. Tollefson, “Carbon-sensing satellite system faces high hurdles,” Nature (Gr. Brit.) 533 (7604), 446–447 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    G. Popkin, “Commercial space sensors go high-tech,” Nature (Gr. Brit.) 545 (7655), 397–398 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    L. Costantino, J. Cuesta, E. Emili, A. Coman, G. Foret, G. Dufour, M. Eremenko, Y. Chailleux, M. Beekmann, and J.-M. Flaud, “Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite,” Atmos. Meas. Tech. 10 (4), 1281–1298 (2017).CrossRefGoogle Scholar
  18. 18.
    R. Dupont, B. Pierce, J. Worden, J. Hair, M. Fenn, P.Hamer, M. Natarajan, T. Schaack, A. Lenzen, E. Apel, J. Dibb, G. Diskin, G. Huey, A. Weinheimer, Y. Kondo, and D. Knapp, “Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign,” Atmos. Chem. Phys. 12 (1), 169–188 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    T. Tanaka, Y. Miyamoto, I. Morino, T. Machida, T. Nagahama, Y. Sawa, H. Matsueda, D. Wunch, S. Kawakami, and O. Uchino, “Aircraft measurements of carbon dioxide and methane for the calibration of ground-based high-resolution Fourier Transform,” Atmos. Meas. Tech. 5 (8), 2003–2012 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Inoue, I. Morino, O. Uchino, Y. Miyamoto, T. Saeki, Y. Yoshida, T. Yokota, C. Sweeney, P. P. Tans, S. C. Biraud, T. Machida, J. V. Pittman, E. A. Kort, T. Tanaka, S. Kawakami, Y. Sawa, K. Tsuboi, and H. Matsueda, “Validation of XCH4 derived from SWIR spectra of GOSAT,” Atmos. Meas. Tech. 7 (9), 2987–3005 (2014).CrossRefGoogle Scholar
  21. 21.
    A. T. J. De Laat, I. Aben, M. Deeter, P. Nedelec, H. Eskes, J.-L. Attie, P. Ricaud, R. Abida, L. E. Amraoui, and J. Landgraf, “Validation of nine years of MOPITT V5 NIR using MOZAIC/IAGOS measurements: Biases and long-term stability,” Atmos. Meas. Tech. 7 (11), 3783–3799 (2014).CrossRefGoogle Scholar
  22. 22.
    H. S. Marey, Z. Hashisho, L. Fu, and J. Gille, “Spatial and temporal variation in CO over Alberta using measurements from satellites, aircraft, and ground stations,” Atmos. Chem. Phys. 15 (7), 3893–3908 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, Ph. Nedelec, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic,” Atmos. Ocean. Opt. 31 (3), 300–310 (2018).CrossRefGoogle Scholar
  24. 24.
    T. August, D. Klaer, P. Schlussel, T. Hultberg, M. Crapeau, A. Arriga, A. O. Carroll, D. Coppens, R. Munro, and X. Calbet, “IASI on Metop-A: Operational Level 2 retrievals,”. Quant. Spectrosc. Radiat. Transfer 113 (4), 1340–1371 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    C. Crevoisier, A. Chedin, H. Matsueda, T. Machida, R. Armante, and N. A. Scott, “First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations,” Atmos. Chem. Phys. 9 (14), 4797–4810 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    C. Crevoisier, C. Clerbaux, V. Guidard, T. Phulpin, R. Armante, B. Barret, C. Camy-Peyret, J.-P. Chaboureau, P.-F. Coheur, L. Crepeau, G. Dufour, L. Labonnote, L. Lavanant, J. Hadji-Lazaro, and H. Herbin, “Towards IASI-New Generation (IASING): Impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables,” Atmos. Meas. Tech. 7 (12), 4367–4385 (2014).CrossRefGoogle Scholar
  27. 27.
    M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, F. Nedelek, Zh.-D. Parizh, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in troposphere above the South of West Siberia,” Opt. Atmos. Okeana. 26 (9) 773–782 (2013).Google Scholar
  28. 28.
    M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, F. Nedelek, Zh.-D. Parizh, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in troposphere above Siberia in the period of wild fires of 2012,” Issled. Zemli Kosmosa, No. 1, 72–84 (2014).Google Scholar
  29. 29.
    C. Crevoisier, D. Nobileau, R. Armante, L. Crepeau, T. Machida, Y. Sawa, H. Matsueda, T. Schuck, T. Thonat, J. Pernin, N. A. Scott, and A. Chedin, “The 2007–2011 evolution of tropical methane in the mid-troposphere as seen from spase by MetOp-A/IASI,” Atmos. Chem. Phys. 13 (8), 4279–4289 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    X. Xiong, C. Barnet, E. S. Maddy, A. Cambacorta, T. S. King, and S. C. Wofsy, “Mid-upper tropospheric methane retrieval from IASI and its validation,” Atmos. Meas. Tech. 6 (9), 2255–2265 (2013).CrossRefGoogle Scholar
  31. 31.
    L. N. Yurganov and A. Leifer, “Estimates of methane emission rates from some Arctic and sub-Arctic areas based on orbital interferometer IASI data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (3), 173–183 (2016).CrossRefGoogle Scholar
  32. 32.
    L. N. Yurganov, A. Leifer, and Mair K. Lund, “Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (2), 107–119 (2016).CrossRefGoogle Scholar
  33. 33.
    A. V. Kukharskii and F. B. Uspenskii, “Monitoring of carbon dioxide mean tropospheric concentration over Siberian ecosystems from satellite-based high-resolution infrared sounders data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 7 (4), 204–210 (2010).Google Scholar
  34. 34.
    A. V. Kukharskii and F. B. Uspenskii, “Determination of tropospheric mean carbon dioxide concentration from satellite high spectral resolution IR-sounder data,” Rus. Meteor. Hydrol. 34 (4), 202–211 (2009).CrossRefGoogle Scholar
  35. 35.
    A. B. Uspenskii, A. V. Kukharskii, S. V. Romanov, and A. N. Rublev, “Monitoring of CO2 concentrations an the total methane in the troposphere above Siberia by IT sounding data from AIRS and IASI satellites,” Issled. Zemli i kosmosa, No. 1, 14–21 (2011).Google Scholar
  36. 36.
    A. M. Michalak, L. M. P. Bruhwiler, and P. P. Tans, “A geostatistical approach to surface flux estimation of atmospheric trace gases,” J. Geophys. Res. 109 (D14), D14109 (2004). doi 10.1029/2003JD004422Google Scholar
  37. 37.
    E. D. De Wachter, B. Barret, E. L. Flochmoen, E. Pavelin, M. Matricardi, C. Clerbaux, J. Hadji-Lazaro, M. George, D. Hurtmans, P. F. Coheur, P. Nedelec, and J. P. Cammas, “Retrieval of MetOp-A/IASI CO profiles and vilidation with MOZAIC,” Atmos. Meas. Tech. 5 (11), 2843–2857 (2012).CrossRefGoogle Scholar
  38. 38.
    A. Boynard, C. Clerbaux, L. Clarisse, S. Safieddine, M. Pommier, M. V. Damme, S. Bauduin, C. Oudot, and J. H. Lazaro, “First simultaneous space measurements of atmospheric pollutants in the boundary,” Geophys. Res. Lett. 41 (2), 645–651 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    O. E. Carcia, E. Sepulveda, M. Schneider, F. Hase, T. August, T. Blumenstock, R. Munro, A. J. Comez-Pelaez, T. Hultberg, A. Redondas, S. Barthlott, A. Wiegele, Y. Gonzalez, and E. Sanroma, “Consistency and quality assessment of the Metop-A/IASI and Metop-/IASI operational trace gas products (O3, CO, N2O, CY4, and CO2) in the subtropical North Atlantic,” Atmos. Meas. Tech. 9 (5), 2315–2333 (2016).CrossRefGoogle Scholar
  40. 40.
    J. Cuesta, M. Eremenko, X. Liu, G. Dufour, Z. Cai, M. Horfner, T. Clarmann, P. Sellito, G. Foret, B. Gaubert, M. Beekmann, J. Orphal, K. Chance, R. Spurr, and J.-M. Flaud, “Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe,” Atmos. Chem. Phys. 13 (13), 9675–9693 (2013).ADSCrossRefGoogle Scholar
  41. 41.
    S. Safieddine, C. Clerbaux, M. George, J. Hadji-Lazaro, D. Hurtmans, P.-F. Coheur, C. Wespes, D. Loyola, P. Valks, and N. Hao, “Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2,” J. Geophys. Res.: Atmos. 118 (18), 10555–10566 (2013).ADSGoogle Scholar
  42. 42.
    H. Oetjen, V. H. Payne, S. S. Kulawik, A. Eldering, J. Worden, D. P. Edwards, G. L. Francis, H. M. Worden, C. Clerbaux, J. H. Lazaro, and D. Hurtmans, “Extending the satellite data record of tropospheric ozone profiles from Aura-TES to MetOp-IASI: Characterisation of optimal estimation retrievals,” Atmos. Meas. Tech. 7 (12), 4223–4236 (2014).CrossRefGoogle Scholar
  43. 43.
    N. Smith, Sr. W. L. Smith, E. Weisz, and H. E. Revercomb, “AIRS, IASI, and CrIS retrieval records at climate scales: An investigation into the propagation of systematic uncertainty,” J. Appl. Meteorol. Climatol. 54 (7), 1465–1481 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    A. Boynard, D. Hurtmans, M. E. Koukoli, F. Goutail, J. Bureau, S. Safieddine, C. Lerot, J. Hadji-Lazaro, C. Wespes, J. P. Pommereau, A. Pazmino, I. Zyrichidou, D. Balis, A. Barbe, S. N. Mikhailenko, D. Loyola, P. Valks, M. V. Roozendael, P. F. Coheur, and C. Clerbaux, “Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements,” Atmos. Meas. Tech. 9 (9), 4327–4353 (2016).CrossRefGoogle Scholar
  45. 45.
    C. Wespes, D. Hurtmans, C. Clerbaux, and P.-F. Coheur, “O3 variability in the troposphere as observed by IASI over 2008–2016: Contribution of atmospheric chemistry and dynamics,” J. Geophys. Res.: Atmos. 122 (4), 2429–2451 (2017).ADSGoogle Scholar
  46. 46.
    C. Wespes, L. Emmons, D. P. Edwards, J. Hannigan, D. Hurtmans, M. Saunois, P. -F. Coheur, C. Clerbaux, M. T. Coffey, R. L. Batchelor, R. Lindenmaier, K. Strong, A. J. Weinheimer, J. B. Nowak, T. B. Ryerson, J. D. Crounse, and P. O. Wennberg, “Analysis of ozone and nitric in spring and summer Arctic pollution using aircrat, ground-based, satellite observations and MOZART-4 model: Source attribution and partitioning,” Atmos. Chem. Phys. 12 (1), 237–259 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    M. Pommier, C. Clerbaux, K. S. Law, G. Ancellet, P. Bernath, P.-F. Coheur, J. Hadji-Lazaro, D. Hurtmans, P. Nedelec, F. Ravett, T. B. Ryerson, H. Schlager, and A. J. Weinheimer, “Analysis of IASI tropospheric O3 data over the Arctic during POLARCAT campaigns in 2008,” Atmos. Chem. Phys. 12 (16), 7371–7389 (2012).ADSCrossRefGoogle Scholar
  48. 48.
    J. Gazeaux, C. Clerbaux, M. George, J. Hadji-Lazaro, J. Kuttippurath, P. -F. Coheur, D. Hurtmans, T. Deshler, M. Kovilakam, P. Campbell, V. Guidard, F. Rabier, and J.-N. Thepaut, “Intercomparison of polar ozone profiles by IASI/MetOp sounder with 2010 Concordiasi ozonesonde observations,” Atmos. Meas. Tech. 6 (3), 613–620 (2013).CrossRefGoogle Scholar
  49. 49.
    V. G. Arshinova, B. D. Belan, G. A. Ivlev, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 4. Vertical stratification of contaminants,” Atmos. Ocean. Opt. 19 (10), 814–817 (2006).Google Scholar
  50. 50.
    B. D. Belan, G. N. Tolmachev, and A. V. Fofonov, “Ozone vertical distribution in the troposphere over south regions of Western Siberia,” Atmos. Ocean. Opt. 24 (2), 181–187 (2011).CrossRefGoogle Scholar
  51. 51.
    P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, F. Nedelek, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Large-scale studies of gaseous and aerosol composition of air over Siberia,” Opt. Atmos. Okeana 27 (3), 232–239 (2014).Google Scholar
  52. 52.
    B.D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. Yu. Antokhina
    • 1
  • P. N. Antokhin
    • 1
  • V. G. Arshinova
    • 1
  • M. Yu. Arshinov
    • 1
  • B. D. Belan
    • 1
    Email author
  • S. B. Belan
    • 1
  • V. V. Belov
    • 1
  • Yu. V. Gridnev
    • 1
  • D. K. Davydov
    • 1
  • G. A. Ivlev
    • 1
  • A. V. Kozlov
    • 1
  • K. S. Law
    • 2
  • Ph. Nédélec
    • 3
  • J. -D. Paris
    • 4
  • T. M. Rasskazchikova
    • 1
  • D. E. Savkin
    • 1
  • D. V. Simonenkov
    • 1
  • T. K. Sklyadneva
    • 1
  • G. N. Tolmachev
    • 1
  • A. V. Fofonov
    • 1
  1. 1.V. E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.IPSL Laboratoire Atmosphères, Milieux, Observations Spatiales, UPMC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, UMR 8190LATMOS-IPSLParisFrance
  3. 3.Laboratoire d’Aerologie, 14Avenue E. BelinToulouseFrance
  4. 4.Laboratoire des Sciences du Climat et de l’Environnement, Unite mixte CEA-CNRS, Bat. 709CE L’Orme des MerisiersGif sur YvetteFrance

Personalised recommendations