Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 10, pp 933–942 | Cite as

Electrochemical Determination of Levodopa on Carbon Paste Electrode Modified with Salmon Sperm DNA and Reduced Graphene Oxide–Fe3O4 Nanocomposite

  • M. Hosseini GhalehnoEmail author
  • M. Mirzaei
  • M. Torkzadeh-Mahani
Article
  • 29 Downloads

Abstract

In this work, an electrochemical label-free DNA biosensor was developed for determination of levodopa (LD). The biosensor was constructed using reduced graphene oxide decorated with Fe3O4 magnetic nanoparticles (rGO–Fe3O4) on a carbon paste electrode (CPE) and double-stranded deoxyribonucleic acid (DNA) (DNA/rGO–Fe3O4-CPE). The application was related to the molecular interaction between LD and DNA. Thus, the voltammetric behavior of LD at the surface of DNA/rGO–Fe3O4-CPE was studied using differential pulse voltammetry (DPV) where the oxidation peak current of LD was measured as an analytical signal. A considerable increase was observed in the oxidation signal of LD at the DNA-coated electrode compared to the DNA-free electrode, indicating the pre-concentration of LD due to the interaction with the surface-confined DNA layer. Scanning electron microscopy, energy dispersive X-ray and Fourier transform infrared spectroscopy confirmed the structure of the synthesized nanocomposites (electrode composition). Electrochemical studies revealed that modification of the electrode significantly increases the oxidation peak currents of LD. Under the optimum conditions, the calibration curve was linear in the range of 0.5–600 nM with a detection limit of 0.11 nM. The relative standard deviation for 200.0 nM was 4.07% (n = 5). The developed biosensor was successfully applied to the analysis of LD in human serum and urine sample.

Keywords:

biosensor carbon paste electrode levodopa nanocomposite 

Notes

ACKNOWLEDGMENTS

The authors wish to thank the Shahid Bahonar University of Kerman and Graduate University of Advanced Technology of Kerman.

CONFLICT OF INTEREST

The authors declare that they have no conflict of Interest.

Supplementary material

11175_2019_1048_MOESM1_ESM.pdf (328 kb)
11175_2019_1048_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    Teixeira, M.F., Marcolino-Junior, L., Fatibello-Filho, O., Dockal, E., and Bergamini, M.F., An electrochemical sensor for l-dopa based on oxovanadium-salen thin film electrode applied flow injection system, Sens Actuat. B Chem., 2007, vol. 122, p. 549.CrossRefGoogle Scholar
  2. 2.
    Di Giulio, I., St George, R.J., Kalliolia, E., Peters, A.L., Limousin, P., and Day, B.L., Maintaining balance against force perturbations: impaired mechanisms unresponsive to levodopa in Parkinson’s disease, J. Neurophysiol., 2016, vol. 11, p. 493.CrossRefGoogle Scholar
  3. 3.
    Gardoni, F., Morari, M., Kulisevsky, J., Brugnoli, A., Caccia, C., Mellone, M., Melloni, E., Padoani, G., Sosti, M., and Vailati, S., Safinamide modulates levodopa induced striatal glutamatergic overactivity in a rat model of Parkinson’s disease, J. Neurol. Sci., 2017, vol. 381, p. 361.CrossRefGoogle Scholar
  4. 4.
    Hasan, B.A., Khalaf, K.D., and De La Guardia, M., Flow analysis-spectrophotometric determination of L‑dopa in pharmaceutical formulations by reaction with p-aminophenol, Talanta, 1995, vol. 42, p. 627.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Coello, J., Maspoch, S., and Villegas, N., Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi-and three-way partial least squares calibration, Talanta, 2000, vol. 53, p. 627.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sagar, K.A. and Smyth, M.R., Simultaneous determination of levodopa, carbidopa and their metabolites in human plasma and urine samples using LC-EC, J. Pharm. Biomed., Anal., 2000, vol. 22, p. 613.CrossRefGoogle Scholar
  7. 7.
    Saxer, C., Niina, M., Nakashima, A., Nagae, Y., and Masuda, N., Simultaneous determination of levodopa and 3-O-methyldopa in human plasma by liquid chromatography with electrochemical detection, J. Chromatogr. B, 2004, vol. 802, p. 299.CrossRefGoogle Scholar
  8. 8.
    Tolokan, A., Klebovich, I., Balogh-Nemes, K., and Horvai, G., Automated determination of levodopa and carbidopa in plasma by high-performance liquid chromatography-electrochemical detection using an on-line flow injection analysis sample pretreatment unit, J. Chromatogr. B, 1997, vol. 698, no. 1, p. 201.CrossRefGoogle Scholar
  9. 9.
    Marcolino-Junior, L.H., Teixeira, M.F., Pereira, A.V., and Fatibello-Filho, O., Flow injection determination of levodopa in tablets using a solid-phase reactor containing lead (IV) dioxide immobilized, J. Pharm. Biomed. Anal., 2001, vol. 25, p. 393.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ding, Y., Wang, Q., Gao, F., and Gao, F., Highly sensitive and selective DNA biosensor using a dumbbell-shaped bis-groove binder of bi-acetylferrocene ethylenediamine complex as electrochemical indicator, Electrochim. Acta, 2013, vol. 106, p. 35.CrossRefGoogle Scholar
  11. 11.
    Huang, K.-J., Liu, Y.-J., Wang, H.-B., and Wang, Y.-Y., A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine graphene composite, Electrochim. Acta, 2014, vol. 118, p. 130.CrossRefGoogle Scholar
  12. 12.
    Ghalehno, M.H., Mirzaei, M., and Torkzadeh-Mahani, M., Aptamer-based determination of tumor necrosis factor α using a screen-printed graphite electrode modified with gold hexacyanoferrate, Microchim. Acta, 2018, vol. 185, p. 165.CrossRefGoogle Scholar
  13. 13.
    Li, L., Ma, C., Kong, Q., Li, W., Zhang, Y., Ge, S., Yan, M., and Yu, J., A 3D origami electrochemical immunodevice based on a Au@Pd alloy nanoparticle-paper electrode for the detection of carcinoembryonic antigen, J. Mater. Chem., 2014, vol. 2, p. 6669.CrossRefGoogle Scholar
  14. 14.
    Peng, H.-P., Hu, Y., Liu, P., Deng, Y.-N., Wang, P., Chen, W., Liu, A.-L., Chen, Y.-Z., and Lin, X.-H., Label-free electrochemical DNA biosensor for rapid detection of mutidrug resistance gene based on Au nanoparticles/toluidine blue-graphene oxide nanocomposites, Sens. Actuat. B: Chem., 2015, vol. 207, p. 269.CrossRefGoogle Scholar
  15. 15.
    Jiang, C., Yang, T., Jiao, K., and Gao, H., A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene, Electrochim. Acta, 2008, vol. 53, p. 2917.CrossRefGoogle Scholar
  16. 16.
    Kumar, P.R., Jung, Y.H., Bharathi, K.K., Lim, C.H., and Kim, D.K., High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials, Electrochim. Acta, 2014, vol. 146, p. 503.CrossRefGoogle Scholar
  17. 17.
    Sargazi, G., Afzali, D., and Mostafavi, A., An efficient and controllable ultrasonic-assisted microwave route for flower-like Ta (V)-MOF nanostructures: preparation, fractional factorial design, DFT calculations, and high-performance N2 adsorption, J. Porous. Mat., 2018, vol. 25, no. 6, p. 1723.CrossRefGoogle Scholar
  18. 18.
    Sargazi, G., Afzali, D., and Mostafavi, A., A novel synthesis of a new thorium(IV) metal organic framework nanostructure with well controllable procedure through ultrasound assisted reverse micelle method, Ultrason. Sonochem., 2018, vol. 41, p. 234.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Vinothkannan, M., Karthikeyan, C., Kim, A.R., and Yoo, D.J., One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation, Spectrochim. Acta, 2015, vol. 136, p. 256.CrossRefGoogle Scholar
  20. 20.
    Zhang, W., Zheng, J., Shi, J., Lin, Z., Huang, Q., Zhang, H., Wei, C., Chen, J., Hu, S., and Hao, A., Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine, Anal. Chim. Acta, 2015, vol. 853, p. 285.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., Superior thermal conductivity of single-layer graphene, Nano Lett., 2008, vol. 8, p. 902.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S., Stormer, H.L., Zeitler, U., Maan, J., Boebinger, G., Kim, P., and Geim, A.K., Room-temperature quantum Hall effect in graphene, Science, 2007, vol. 315, p. 1379.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., and Firsov, A.A., Two-dimensional gas of massless Dirac fermions in graphene, Nature, 2005, vol. 438, p. 197.CrossRefGoogle Scholar
  24. 24.
    Lee, C., Wei, X., Kysar, J.W., and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 2008, vol. 321, p. 385.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T., and Ruoff, R.S., Preparation and characterization of graphene oxide paper, Nature, 2007, vol. 448, p. 457.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Peigney, A., Laurent, C., Flahaut, E., Bacsa, R., and Rousset, A., Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 2001, vol. 39, p. 507.CrossRefGoogle Scholar
  27. 27.
    Rao, C., Biswas, K., Subrahmanyam, K., and Govindaraj, A., Graphene, the new nanocarbon, J. Mater. Chem., 2009, vol. 19, p. 2457.CrossRefGoogle Scholar
  28. 28.
    Ghalehno, M.H., Mirzaei, M., and Torkzadeh-Mahani, M., Double strand DNA-based determination of menadione using a Fe3O4 nanoparticle decorated reduced graphene oxide modified carbon paste electrode, Bioelectrochem., 2018, vol. 124, p. 165.CrossRefGoogle Scholar
  29. 29.
    Su, J., Cao, M., Ren, L., and Hu, C., Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties, J. Phys. Chem. C, 2011, vol. 115, p. 14469.CrossRefGoogle Scholar
  30. 30.
    Bard, A.J., Faulkner, L.R., Leddy, J., and Zoski, C.G., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 1980, vol. 2.Google Scholar
  31. 31.
    Wang, Y., Ni, Y., and Kokot, S., Voltammetric behavior of complexation of salbutamol with calf thymus DNA and its analytical application, Anal. Biochem., 2011, vol. 419, p. 76.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Bagheri, H., Afkhami, A., Saber-Tehrani, M., and Khoshsafar, H., Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry, Talanta, 2012, vol. 97, p. 87.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Welch, T.W. and Thorp, H.H., Distribution of metal complexes bound to DNA determined by normal pulse voltammetry, J. Phys. Chem., 1996, vol. 100, p. 13829.CrossRefGoogle Scholar
  34. 34.
    Lu, X., Zhang, M., Kang, J., Wang, X., Zhuo, L., and Liu, H., Electrochemical studies of kanamycin immobilization on self-assembled monolayer and interaction with DNA, J. Inorg. Biochem., 2004, vol. 98, p. 582.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Laviron, E., Roullier, L., and Degrand, C., A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction, Electroanalysis, 1980, vol. 112, p. 11.CrossRefGoogle Scholar
  36. 36.
    Kara, P., Kerman, K., Ozkan, D., Meric, B., Erdem, A., Nielsen, P.E., and Ozsoz, M., Label-free and label based electrochemical detection of hybridization by using methylene blue and peptide nucleic acid probes at chitosan modified carbon paste electrodes, Electroanalysis, 2002, vol. 14, p. 1685.CrossRefGoogle Scholar
  37. 37.
    Daneshgar, P., Norouzi, P., Ganjali, M.R., Ordikhani-Seyedlar, A., and Eshraghi, H., A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method, Colloids Surf. B, 2009, vol. 68, p. 27.CrossRefGoogle Scholar
  38. 38.
    Quintino, M.S.M., Yamashita, M., and Angnes, L., Voltammetric studies and determination of levodopa and carbidopa in pharmaceutical products, Electroanalysis, 2006, vol. 18, p. 655.CrossRefGoogle Scholar
  39. 39.
    Babaei, A. and Babazadeh, M., A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite, Electroanalysis, 2011, vol. 23, p. 1726.CrossRefGoogle Scholar
  40. 40.
    Bergamini, M.F., Santos, A.L., Stradiotto, N.R., and Zanoni, M.V.B., A disposable electrochemical sensor for the rapid determination of levodopa, J. Pharm. Biomed. Anal., 2005, vol. 39, p. 54.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Teixeira, M.F., Bergamini, M.F., Marques, C.M., and Bocchi, N., Voltammetric determination of L-dopa using an electrode modified with trinuclear ruthenium ammine complex (Ru-red) supported on Y-type zeolite, Talanta, 2004, vol. 63, p. 1083.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Viswanathan, S., Liao, W.-C., Huang, C.-C., Hsu, W.-L., and Ho, J.-a.A., Rapid analysis of L-dopa in urine samples using gold nanoelectrode ensembles, Talanta, 2007, vol. 74, p. 229.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. Hosseini Ghalehno
    • 1
    • 2
    Email author
  • M. Mirzaei
    • 1
  • M. Torkzadeh-Mahani
    • 3
  1. 1.Department of Chemistry, Shahid Bahonar University of KermanKermanIran
  2. 2.Young Research Society, Shahid Bahonar University of KermanKermanIran
  3. 3.Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced TechnologyKermanIran

Personalised recommendations