Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 10, pp 989–997 | Cite as

Magnetic and Electrochemical Properties Study of CoFe2O4 Nanocrystals Synthesized by a Facile Hydrothermal Route

  • Hao Li
  • Feng-Bo Xu
  • Li-Jun Wu
  • Tan-Li Han
  • Liu-Qun Fan
  • Zhen-Wei Dong
  • Chun-Ying ChaoEmail author
Article
  • 10 Downloads

Abstract

Magnetic CoFe2O4@carbon (CFO@C) nanoparticles were synthesized by employing glucose as carbon source via hydrothermal process, and their magnetic and electrochemical properties of CFO@C are both studied in this work. The Ms and Mr values of CFO@C nanoparticles are lower than those of pure CFO samples. The changed magnetic properties may be related to the carbon layer extinguishing the surface magnetic moment with spin canting. Benefiting from the amorphous structure and good electronic conductivity of carbon shells, the CFO@C 20 wt % electrode exhibited the capacity of 201 mA h g–1 at the current density of 500 mA g–1 and high reversible capacity up to 353 mA h g–1 after 100 cycles at the current density of 50 mA g–1, respectively.

Keywords:

lithium battery mixed metal oxides hydrothermal magnetic property anode material 

Notes

AUTHOR CONTRIBUTIONS

Hao Li designed the experiments and wrote the manuscript. Chun-Ying Chao performed analyses of TG curves and TEM images. Feng-Bo Xu and Liu-Qun Fan assembled the batteries and helped to analyses the cycle performance datas. Li-Jun Wu, Zhen-Wei Dong and Tian-Li Han helped rewrite the manuscript during the revision process. All the authors have been involved in the result discussion and data analysis process.

FUNDING

This work was financially supported by the National Nature Science Foundation of China (51502258 and 51503176), Science and Technology Project of Henan province (182102210503), Department of Education Science and Technology key projects of Henan province (16A430007 and 18B150027).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ETHICAL APPROVAL

This article does not contain any studies with human participants or animals performed by any of the authors.

REFERENCES

  1. 1.
    Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., Freunberger, S.A., Favier, F., and Fontaine, O., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors, Nat. Mater., 2016, vol. 16, p. 446.PubMedCrossRefGoogle Scholar
  2. 2.
    Christudas Dargily, N., Thimmappa, R., Manzoor Bhat, Z., Devendrachari, M.C., Kottaichamy, A.R., Gautam, M., Shafi, S.P., and Thotiyl, M.O., A rechargeable hydrogen battery, J. Phys. Chem. Lett., 2018, vol. 9, p. 2492.PubMedCrossRefGoogle Scholar
  3. 3.
    Thimmappa, R., Paswan, B., Gaikwad, P., Devendrachari, M.C., Makri Nimbegondi Kotresh, H., Rani Mohan, R., Pattayil Alias, J., and Thotiyl, M.O., Chemically chargeable photo battery, J. Phys. Chem. C, 2015, vol. 119, p. 14010.CrossRefGoogle Scholar
  4. 4.
    Bhat, Z.M., Thimmappa, R., Devendrachari, M.C., Shafi, S.P., Aralekallu, S., Kottaichamy, A.R., Gautam, M., and Thotiyl, M.O., A direct alcohol fuel cell driven by an outer sphere positive electrode, J. Phys. Chem. Lett., 2017, vol. 8, p. 3523.PubMedCrossRefGoogle Scholar
  5. 5.
    Xu, J., Ma, J., Fan, Q., Guo, S., and Dou, S., Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries, Adv Mater., 2017, vol. 29, p. 1606454.CrossRefGoogle Scholar
  6. 6.
    Sun, C., Liu, J., Gong, Y., Wilkinson, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 2017, vol. 33, p. 363.CrossRefGoogle Scholar
  7. 7.
    Zhang, Y., Jiao, Y., Liao, M., Wang, B., and Peng, H., Carbon nanomaterials for flexible lithium ion batteries, Carbon, 2017, vol. 124, p. 79.CrossRefGoogle Scholar
  8. 8.
    Wei, Q., Xiong, F., Tan, S., Huang, L., Lan, E.H., Dunn, B., and Mai, L., Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage, Adv. Mater., 2017, vol. 29, p. 1602300.CrossRefGoogle Scholar
  9. 9.
    Cong, L., Xie, H., and Li, J., Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries, Adv. Energy Mater., 2017, vol. 7, p. 1601906.CrossRefGoogle Scholar
  10. 10.
    Sun, Y., Liu, N., and Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nature Energy, 2016, vol. 1, p. 16071.CrossRefGoogle Scholar
  11. 11.
    Sheng, T., Xu, Y.F., Jiang, Y.X., Huang, L., Tian, N., Zhou, Z.Y., Broadwell, I., and Sun, S.G., Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage, Acc. Chem. Res., 2016, vol. 49, p. 2569.PubMedCrossRefGoogle Scholar
  12. 12.
    Ding, Y., Yang, Y., and Shao, H., Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery, Solid State Ionics, 2012, vol. 217, p. 27.CrossRefGoogle Scholar
  13. 13.
    Sharma, Y., Sharma, N., Rao, G.V.S., and Chowdari, B.V.R., Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries, J. Power Sources, 2007, vol. 173, p. 495.CrossRefGoogle Scholar
  14. 14.
    Nuli, Y., Zhang, P., Guo, Z., Liu, H., and Yang, J., NiCo2O4 / C nanocomposite as a highly reversible anode material for lithium-ion batteries, Electrochem. Solid-State Lett., 2008, vol. 11, p. A64.CrossRefGoogle Scholar
  15. 15.
    Sharma, Y., Sharma, N., Subbarao, G., and Chowdari, B., Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries, Solid State Ionics, 2008, vol. 179, p. 587.CrossRefGoogle Scholar
  16. 16.
    Zhang, X., Li, D., Zhu, G., Lu, T., and Pan, L., Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries, J. Colloid Interface Sci., 2017, vol. 499, p. 145.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, Z., Fei, P., Xiong, H., Qin, C., Zhao, W., and Liu, X., CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes, Electrochim. Acta, 2017, vol. 252, p. 295.CrossRefGoogle Scholar
  18. 18.
    Wu, L., Xiao, Q., Li, Z., Lei, G., Zhang, P., and Wang, L., CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance, Solid State Ionics, 2012, vol. 215, p. 24.CrossRefGoogle Scholar
  19. 19.
    Li, Z.H., Zhao, T.P., Zhan, X.Y., Gao, D.S., Xiao, Q.Z., and Lei, G.T., High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries, Electrochim. Acta, 2010, vol. 55, p. 4594.CrossRefGoogle Scholar
  20. 20.
    Zhu, Y., Lv, X., Zhang, L., Guo, X., Liu, D., Chen, J., and Ji, J., Liquid-solid-solution assembly of CoFe2O4/graphene nanocomposite as a high-performance lithium-ion battery anode, Electrochim. Acta, 2016, vol. 215, p. 247.CrossRefGoogle Scholar
  21. 21.
    Sun, X., Zhu, X., Yang, X., Sun, J., Xia, Y., and Yang, D., CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries, Green Energy Environ., 2017, vol. 2, p. 160.CrossRefGoogle Scholar
  22. 22.
    Maaz, K., Mumtaz, A., Hasanain, S.K., and Ceylan, A., Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route, J. Magn. Magn. Mater., 2007, vol. 308, p. 289.CrossRefGoogle Scholar
  23. 23.
    Nabiyouni, G., Sharifi, S., Ghanbari, D., and Salavati-Niasari, M., A simple precipitation method for synthesis CoFe2O4 nanoparticles, J. Nanostruct., 2014, vol. 4, p. 317.Google Scholar
  24. 24.
    Jiang, W., Liu, Y., Li, F., Chu, J., and Chen, K., Superparamagnetic cobalt-ferrite-modified carbon nanotubes using a facile method, Mater. Sci. Eng.: B, 2010, vol. 166, p. 132.CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Sandoval, M.P., Beesley, A.M., Miki-Yoshida, M., Fuentes-Cobas, L., and Matutes-Aquino, J.A., Comparative study of the microstructural and magnetic properties of spinel ferrites obtained by co-precipitation, J. Alloys Compd., 2004, vol. 369, p. 190.CrossRefGoogle Scholar
  26. 26.
    Rajendran, M., Pullar, R.C., Bhattacharya, A.K., Das, D., Chintalapudi, S.N., and Majumdar, C.K., Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size, J. Magn. Magn. Mater., 2001, vol. 232, p. 71.CrossRefGoogle Scholar
  27. 27.
    Meng, Y., Chen, D., and Jiao, X., Synthesis and characterization of CoFe2O4 hollow spheres, Eur. J. Inorg. Chem., 2008, vol. 2008, p. 4019.CrossRefGoogle Scholar
  28. 28.
    Nilmoung, S., Kidkhunthod, P., Pinitsoontorn, S., Rujirawat, S., Yimnirun, R., and Maensiri, S., Fabrication, structure, and magnetic properties of electrospun carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers, Appl. Phys. A, 2015, vol. 119, p. 141.CrossRefGoogle Scholar
  29. 29.
    Varma, P.C.R., Manna, R.S., Banerjee, D., Varma, M.R., Suresh, K.G., and Nigam, A.K., Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: a comparative study, J. Alloys Compd., 2008, vol. 453, p. 298.CrossRefGoogle Scholar
  30. 30.
    García-Otero, J., Porto, M., Rivas, J., and Bunde, A., Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles, Phys. Rev. Lett., 2000, vol. 84, p. 167.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, J., Yang, G., Wang, L., Yan, W., and Wei, W., C@CoFe2O4 fiber-in-tube mesoporous nanostructure: formation mechanism and high electrochemical performance as an anode for lithium-ion batteries, J. Alloys Compd., 2017, vol. 693, p. 110.CrossRefGoogle Scholar
  32. 32.
    Zhao, S., Guo, J., Jiang, F., Su, Q., and Du, G., Porous CoFe2O4 nanowire arrays on carbon cloth as binder-free anodes for flexible lithium-ion batteries, Mater. Res. Bull., 2016, vol. 79, p. 22.CrossRefGoogle Scholar
  33. 33.
    Zhang, W.-M., Wu, X.-L., Hu, J.-S., Guo, Y.-G., and Wan, L.-J., Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater., 2008, vol. 18, p. 3941.CrossRefGoogle Scholar
  34. 34.
    Zhu, T., Chen, J.S., and Lou, X.W., Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries, J. Phys. Chem. C, 2011, vol. 115, p. 9814.CrossRefGoogle Scholar
  35. 35.
    Zhang, M., Yang, X., Kan, X., Wang, X., Ma, L., and Jia, M., Carbon-encapsulated CoFe2O4/graphene nanocomposite as high performance anode for lithium ion batteries, Electrochim. Acta, 2013, vol. 112, p. 727.CrossRefGoogle Scholar
  36. 36.
    Qi, W., Li, P., Wu, Y., Zeng, H., Hou, L., Kuang, C., Yao, P., and Zhou, S., Facile synthesis of CoFe2O4 nanoparticles anchored on graphene sheets for enhanced performance of lithium ion battery, Progr. Nat. Sci.: Mater. Int., 2016, vol. 26, p. 498.CrossRefGoogle Scholar
  37. 37.
    Wang, B., Li, S., Liu, J., Yu, M., Li, B., and Wu, X., An efficient route to a hierarchical CoFe2O4@graphene hybrid films with superior cycling stability and rate capability for lithium storage, Electrochim. Acta, 2014, vol. 146, p. 679.CrossRefGoogle Scholar
  38. 38.
    Ren, S., Zhao, X., Chen, R., and Fichtner, M., A facile synthesis of encapsulated CoFe2O4 into carbon nanofibres and its application as conversion anodes for lithium ion batteries, J. Power Sources, 2014, vol. 260, p. 205.CrossRefGoogle Scholar
  39. 39.
    Xia, H., Zhu, D., Fu, Y., and Wang, X., CoFe2O4–graphene nanocomposite as a high-capacity anode material for lithium-ion batteries, Electrochim. Acta, 2012, vol. 83, p. 166.CrossRefGoogle Scholar
  40. 40.
    Brezesinski, T., Wang, J., Polleux, J., Dunn, B., and Tolbert, S.H., Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors, J. Am. Chem. Soc., 2009, vol. 131, p. 1802.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang, J., Polleux, J., Lim, J., and Dunn, B., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C, 2007, vol. 111, p. 14925.CrossRefGoogle Scholar
  42. 42.
    Liu, T.C., Pell, W.G., Conway, B.E., and Roberson, S.L., Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide, J. Electrochem. Soc., 1998, vol. 145, p. 1882.CrossRefGoogle Scholar
  43. 43.
    Wu, L., Li, H., Xie, X., Chai, K., Han, P., Zhang, C., and Yang, C., Study on the effect of liquid nitrogen cold-quenching on electrochemical characteristic of TiO2 complex flakes with edged-curled derived from MAX as anode for lithium ion batteries, J. Alloys Compd., 2019, vol. 780, p. 482.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Hao Li
    • 1
  • Feng-Bo Xu
    • 1
  • Li-Jun Wu
    • 1
  • Tan-Li Han
    • 1
  • Liu-Qun Fan
    • 1
  • Zhen-Wei Dong
    • 1
  • Chun-Ying Chao
    • 1
    Email author
  1. 1.College of Chemistry and Chemical Engineering, Xuchang UniversityHenanChina

Personalised recommendations