Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 5, pp 438–448 | Cite as

Nanostructured Cobalt-Containing Carbon Supports for New Platinum Catalysts

  • L. M. SkibinaEmail author
  • D. K. Mauer
  • V. A. Volochaev
  • V. E. Guterman
Article
  • 2 Downloads

Abstract

Materials containing from 3.1 to 7.7 wt % of cobalt were obtained by electrodeposition of cobalt on Vulcan XC72 carbon powder in suspension. The composition and average diameter of CoO crystallites formed as result of cobalt oxidation in the process of filtering and drying materials, depending on the electrolysis conditions and electrolyte composition, were studied using thermogravimetry and XRD. It is shown that the maximum amount of cobalt can be deposited from electrolytes containing, along with cobalt sulfate, additives of copper and nickel sulfates. Calculations by the Scherrer equation showed that an increase in the CoO content leads to a decrease in the diameter of crystallites, the size of which is in the nano-range. The analysis of X-ray and electrochemical studies indicates the formation, in the course of the borohydride’s synthesis, of combined catalysts containing nanoparticles of the Pt3Co solid solution. The best PtCo/C material demonstrated significant improvement in ORR activity and superior stability compared to commercial Pt/C catalyst of the same platinum loading.

Keywords

cobalt electrodeposition electrocatalysis platinum-based electrocatalyst platinum nanoparticles oxygen reduction reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guo, Q.Y., Zhang, J.H., Goddard, L., Huang, W.A., and Duan, X.F., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction, Science, 2016, vol. 354, p. 1414.CrossRefGoogle Scholar
  2. 2.
    Thompsett, D., Catalysts for the Proton Exchange Membrane Fuel Cell. Handbook of Fuel Cells. Fundamentals, Technology and Applications. V 3 Eds. Vielstich W. N.Y.: Wiley, 2003, p. 6.Google Scholar
  3. 3.
    Alekseenko, A.A., Belenov, S.V., Volochaev, V.A., Novomlinskii, I.N., and Guterman, V.E., CuPt/C-catalysts: synthesis, structure, activity in the oxygen electroreduction reaction, Kondensir. sredy mezhfaznye granitsy (in Russian), 2016, vol. 18, no. 4, p. 460.Google Scholar
  4. 4.
    Yang, H., Platinum-based electrocatalysts with core-shell nanostructures, Angew. Chem. Int. Ed., 2011, vol. 50, no. 12, p. 2674.CrossRefGoogle Scholar
  5. 5.
    Markovic, N.M., Schmidt, T.J., Stamenlcovic, V., and Ross, P.N., New Electrocatalysts for Fuel Cells, Fuel Cells, 2001, vol. 1, p. 105.CrossRefGoogle Scholar
  6. 6.
    Paulus, U.A., Wokaun, A., Scherer, G.G., Schmidt, T.J., Stamenlcovic, V., Markovic, N.M., and Ross, P.N., Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes, Electrochim. Acta, 2002, vol. 47, p. 3787.CrossRefGoogle Scholar
  7. 7.
    Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal, B. Environ, 2005, vol. 56, p. 9.CrossRefGoogle Scholar
  8. 8.
    Koh, S., Halm, N., Yu, C., and Strasser, P., Effects of Composition and Annealing Conditions on Catalytic Activities of Dealloyed Pt—Cu Nanoparticle Electro-catalysts for PEMFC, J. Electrochem. Soc., 2008, vol. 155, p. 1281.CrossRefGoogle Scholar
  9. 9.
    Wadayama, T., Yoshida, H., Ogawa, K., Todoroki, N., and Yamada, Y., Outermost Surface Structures and Oxygen Reduction Reaction Activities of Co/Pt(l11) Bimetallic Systems Fabricated Using Molecular Beam Epitaxy, J. Phys. Chem. C, 2011, vol. 115, p. 18589.CrossRefGoogle Scholar
  10. 10.
    Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCS, Appl. Catal. B: Environ., 2005, vol. 56, p. 9.CrossRefGoogle Scholar
  11. 11.
    Antolini, E., Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells, J. Mater. Sci., 2003, vol. 38, p. 2995.CrossRefGoogle Scholar
  12. 12.
    Guo, S., Li, D., Zhu, H., Zhang, S., Markovic, N.M., Stamenlcovic, Y.R., and Sun, S., FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction, Angew. Chem. Int. Ed., 2013, vol. 52, p. 3465.CrossRefGoogle Scholar
  13. 13.
    Jiang, K., Zhao, D., Guo, S., Zhang, X., Zhu, X., Guo, J., Lu, G., and Huang, X., Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires, Sci. Adv., 2017, vol. 3, p.1601705.CrossRefGoogle Scholar
  14. 14.
    Munoz, M., Ponce, S., Zhang, G.R., Etzold B.J.M., Size-controlled PtNi nanoparticles as highly efficient catalyst for hydrodechlorination reactions, Appl. Catal. B: Environ., 2016, vol. 192, p. 1.CrossRefGoogle Scholar
  15. 15.
    Jalan, V.M. and Taylor, E.J., Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid, J. Electrochem. Soc., 1983, vol. 130, p. 2299.CrossRefGoogle Scholar
  16. 16.
    Toda, T., Igarashi, H., Uchida, H., and Watanabe, M., Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co, J. Electrochem. Soc., 1999, vol. 146, p. 3750.CrossRefGoogle Scholar
  17. 17.
    Beard, B.C. and Ross, P.N., The Structure and Activity of Pt—Co Alloys as Oxygen Reduction Electrocatalysts, J. Electrochem. Soc. 1990. vol. 137, p. 3368.CrossRefGoogle Scholar
  18. 18.
    Paffett, M.T., Berry, J.G., and Gottesfeld, S., Oxygen Reducti on at Pt0.65Cr0.35, Pt0.2Cr0.8 and Roughened Platinum, J. Electrochem. Soc., 1988, vol. 135, p. 1431.CrossRefGoogle Scholar
  19. 19.
    Xiong, L., Kantian, A.M., and Manthiram. A., Pt—M (M = Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells, Electrochem. Commun., 2002, vol. 4, p. 898.CrossRefGoogle Scholar
  20. 20.
    Stamenlcovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., Surface Composition Effects in Electrocatalysis: Kinetics of Oxygen Reduction on Well-Defined Pt 3 Ni and Pt 3 Co Alloy Surfaces, J. Phys. Chem., 2002, vol. 106, p. 11970.CrossRefGoogle Scholar
  21. 21.
    Stamenlcovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces, J. Electroanal. Chem., 2003, vol. 191, p. 554.Google Scholar
  22. 22.
    Salgado, J.R.C., Antolini, E., and Gonzalez, E.R., Structure and Activity of Carbon-Supported Pt—Co Electrocatalysts for Oxygen Reduction, J. Phys. Chem. B, 2004, vol. 108, p. 17767.CrossRefGoogle Scholar
  23. 23.
    Min, M., Cho, J., Cho, K., and Kim, H., Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications, Electrochim. Acta, 2000, vol. 45, p. 4211.CrossRefGoogle Scholar
  24. 24.
    Shukla, A.K., Neergat, M., Bera, P., Jayaram, V., and Hegde, M.S., Catalyst electrode preparation for PEM fuel cells by electrodeposition, J. Electroanal. Chem., 2001, vol. 111, p. 504.Google Scholar
  25. 25.
    Neergat, M., Shukla, A.K., and Gandhi, K.S., Effects of Heat Treatment on the Catalytic Activity and Methanol Tolerance of Carbon-Supported Platinum Alloys, J. Appl. Electrochem, 2001, vol. 31, p.373.CrossRefGoogle Scholar
  26. 26.
    Antolini, E., Formation of carbon-supported PtM alloys for low temperature fuel cells: a review, Mater. Chem. Phys, 2003, vol. 78, p. 563.CrossRefGoogle Scholar
  27. 27.
    Guterman, A.V., Pakhomova, E.B., Guterman, V.E., Kabirov, Yu.V., and Grigor’ev, V.P., Synthesis of nano-structured PtxNi/C and PtxCo/C catalysts and their activity in the reaction of oxygen electroreduction, Inorg. Mater., 2009, vol. 45, no. 7, p. 767.CrossRefGoogle Scholar
  28. 28.
    Moffat, T.P., Mallett, J.J., and Hwang, Sun-Mi., Oxygen Reduction Kinetics on Electrodeposited Pt, Pt100-xNix, and Pt100-xCox, J. Electrochem. Soc., 2009, vol. 156, p. B238.CrossRefGoogle Scholar
  29. 29.
    Guterman, V.E., Novomlinskii, I.N., Alekseenko, A.A., Belenov, S.V., Tsvetkova, G.G., and Balakshina, E.N., Russian Federation Inventor’s Certificate no. 2616190, 13.04.2017.Google Scholar
  30. 30.
    Guterman, V.E., Novomlinskii, I.N, Skibina, L.M., and Mauer, D.K., Russian Federation Inventor’s Certificate no. 2656914, 07.06.2018.Google Scholar
  31. 31.
    Kuriganova, A.B., Leontyeva, D.V., Ivanov, S., Bund, A., and Smirnova, N.V., Electrochemical dispersion technique for preparation of hybrid MOx—C supports and Pt/MOx—C electrocatalysts for low temperature fuel cells, J. Appl. Electrochem., 2016, vol. 46, p. 1245.CrossRefGoogle Scholar
  32. 32.
    Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Belenov, S.V., Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C-catalysts, Inorg. Mater., 2015, vol. 51, p. 1258.CrossRefGoogle Scholar
  33. 33.
    Grazulis, S., Daskevic, A., Merkys, A., and Chateigner A., Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration, Nucleic Acids Research, 2012, vol. 40, p. 420.CrossRefGoogle Scholar
  34. 34.
    Guterman, V.E., Lastovina, T.A., Belenov, S.V., Tabachkova, N.Yu., Vlasenko, V.G., Khodos, I.I., and Balakshina, E.N., PtM/C (M = Ni, Cu, or Ag) Electrocatalysts: Effects of Alloying Components on Morphology and Electrochemically Active Surface Areas, J. Solid State Electrochem., 2014, vol. 18, no. 5, p. 1307.CrossRefGoogle Scholar
  35. 35.
    Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Yu., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts, Nanotechnologies in Russia, 2016, vol. 11, no. 5–6, p. 287.CrossRefGoogle Scholar
  36. 36.
    Hasche, F., Oezaslan, M., and Strasser, P., Activity, Stability, and Degradation Mechanisms of Dealloyed PtCu3 and PtCo3 Nanoparticle Fuel Cell Catalysts, Chem.Cat.Chem., 2011, vol. 3, p. 1805.Google Scholar
  37. 37.
    Hodnik, N., Jozinovi, B., Zorko, M., and Gaberelc, M., Stability of Commercial Pt/C Low Temperature Fuel Cell Catalyst: Electrochemical IL-SEM Study, Acta Chim. Slov., 2014, vol. 61, p. 280.Google Scholar
  38. 38.
    Alekseenko, A.A., Moguchikh, E.A., Safronenko, O.I., and Guterman, V.E., Durability of de-alloyed PtCu/C-electrocatalysts, Int. J. Hydrogen Energy, 2018, vol. 43(51), p. 22885.CrossRefGoogle Scholar
  39. 39.
    Kozinkin, A.V., Vlasenko, V.G., Kulikova, O.V., Shvachko, O.V., Kozinkin, Yu.A., Vysochina, L.L., Guterman, V.E., and Zubavichus, Ya.V., Electronic and atomic structure of platinum—cobalt nanocatalysts, J. Struct. Chem., 2011, vol. 52, p. S76CrossRefGoogle Scholar
  40. 40.
    Guterman, V.E., Pustovaya, L.E., Guterman, A.V., and Vysochina, L.L., Borohydride synthesis of Ptx—Ni/C-catalysts and study of activity in the oxygen electroreduction reaction, Russ. J. Electrochem., 2007, vol. 43, no. 9, p. 1091.CrossRefGoogle Scholar
  41. 41.
    Moguchikh, E.A., Alekseenko, A.A., Guterman, V.E. et al., Effect of the composition and structure of Pt(Cu)/C electrocatalysts on their stability under different stress test conditions, Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 979.CrossRefGoogle Scholar
  42. 42.
    Alekseenko, A.A., Guterman, V.E., Belenov, S.V., Menshikov, V.S., et al., Pt/C electrocatalysts based on the nanoparticles with the gradient structure, Int. J. Hydrogen Energy, 2018, vol. 43 (7), p. 3676.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. M. Skibina
    • 1
    Email author
  • D. K. Mauer
    • 1
  • V. A. Volochaev
    • 1
  • V. E. Guterman
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations