Russian Journal of Electrochemistry

, Volume 55, Issue 5, pp 449–457 | Cite as

Electrodialytic Extraction of Zinc(II) by Liquid Membranes Based on Di(2-ethylhexyl)phosphoric Acid

  • T. Zh. SadyrbaevaEmail author


A new process of extraction of zinc(II) ions with the use of liquid membranes under the conditions of galvanostatic electrodialysis with metal electrodeposition in the catholyte is presented. Liquid membranes represent solutions of di(2-ethylhexyl)phosphoric acid with addition of tri-n-octylamine in 1,2-dichloroethane. The effect of the electrodialysis current density and the composition of aqueous solutions and organic membranes on the rates of extraction, transmembrane transfer of metal ions, and electrodeposition of metal is studied. Fine-crystalline cathodic deposits of zinc are obtained from solutions of hydrochloric, sulfuric, perchloric, and acetic acids. It is shown that in the process under study, the virtually complete (>99.9%) extraction of zinc(II) ions by liquid membranes from their original solution containing 0.01 M ZnSO4 is achieved after 1–2.5 h of electrodialysis. The maximum degree of metal re-extraction is 98% and the degree of electrodeposition is 78%. It is shown that the shape of chronopotentiograms can serve as a criterion of completeness of zinc(II) extraction from the original solution.


zinc liquid membrane electrodialysis electrodeposition di(2-ethylhexyl)phosphoric acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhivopistsev, V.P. and Selezneva, E.A., Analiticheskaya khimiya tsinka (Analytical Chemistry of Zinc), Moscow: Nauka, 1975.Google Scholar
  2. 2.
    Dolina, L.F., Sovremennaya tekhnika i tekhnologiya dlya ochistki stochnykh vod on solei tyazhelykh metallov (Modern Techniques and Technologies for Purification of Wastewater from Salts of Heavy Metals), Dnepropetrovsk: Kontinent, 2008.Google Scholar
  3. 3.
    Ivakhno, S.Yu. and Yurtov, E.V., Membrannaya ekstraktsiya (Membrane Extraction), Moscow: VINITI, 1990.Google Scholar
  4. 4.
    Yagodin, G.A., Kagan, S.Z., Tarasov, V.V., et al., Osnovy zhidkostnoi ekstraktsii (Fundamentals of Liquid-liquid Extraction), Moscow: Khimiya, 1981.Google Scholar
  5. 5.
    Ata, O.N., Bese, A.V., Colak, S., et al., Effect of parameters on the transport of zinc ion through supported liquid membrane, Chem. Eng. Process., 2004, vol. 43, p. 895.CrossRefGoogle Scholar
  6. 6.
    Ata, O.N. and Colak, S., Modelling of zinc transport through a supported liquid membrane, Hydrometallurgy, 2005, vol. 80, p. 155.CrossRefGoogle Scholar
  7. 7.
    He, D., Luo, X., Yang, Ch., et al., Study of transport and separation of Zn(II) by a combined supported liquid membrane/strip dispersion process containing D2EHPA in kerosene as the carrier, Desalination, 2006, vol. 194, p. 40.CrossRefGoogle Scholar
  8. 8.
    Fouad, E.A. and Bart, H.-J., Emulsion liquid membrane extraction of zinc by a hollow-fiber contactor, J. Membr. Sci., 2008, vol. 307, p. 156.CrossRefGoogle Scholar
  9. 9.
    Singh, R., Mehta, R., and Kumar, V., Simultaneous removal of copper, nickel and zinc metal ions using bulk liquid membrane system, Desalination, 2011, vol. 272, p. 170.CrossRefGoogle Scholar
  10. 10.
    Popov, A., in Electrodialysis through Liquid Ion-exchange Membranes and the Oil-water Interface in Liquid-liquid Interface: Theory and Methods, Volkov, A. and Deamer, D., Eds, New York: CRC, 2006, p. 333.Google Scholar
  11. 11.
    Sadyrbaeva, T.Zh., Liquid membrane system for extraction and electrodeposition of silver(I), J. Electroanal. Chem., 2010, vol. 648, no. 2, p. 105.CrossRefGoogle Scholar
  12. 12.
    Sadyrbaeva, T.Zh., Recovery of cobalt(II) by the hybrid liquid membrane-electrodialysis-electrolysis process, Electrochim. Acta., 2014, vol. 133, p. 161.CrossRefGoogle Scholar
  13. 13.
    Bulatov, M.I. and Kalinkin, I.P., Prakticheskoe rukovodstvo po fotokolorimetricheskim i spektrofotomet-richeskim metodam analiza, 2-e izd. (Practical Guide to Photocolorimetric and Spectrophotometric Methods of Analysis, 2nd Edition), Leningrad: Khimiya, 1968. p. 215Google Scholar
  14. 14.
    Mikhailov, V.A., Chemistry of extraction of metals by dialkyl phosphoric acids and their salts, in: Sovremen-nye problemy khimii i tekhnologii ekstraktsii (Modern Problems of Extraction Chemistry and Technology), Moscow: RAN, 1999, vol. 1, p. 72.Google Scholar
  15. 15.
    Kholkin, A.I., Belova, V.V., Pashkov, G.L. et al., Solvent binary extraction, J. Molec. Liq., 1999, vol. 82, nos. 1–2, p. 131.CrossRefGoogle Scholar
  16. 16.
    Jafari, H., Abdollahi, H., Gharabaghi, M., and Balesini, A.A., Solvent extraction of zinc from synthetic Zn-Cd-Mn chloride solution using D2EHPA: optimization and thermodynamic studies, Separ. Purif. Technol., 2018, vol. 197, p. 210.CrossRefGoogle Scholar
  17. 17.
    Pereira, D.D., Rocha, S.D.F., and Mansur, M.B., Recovery of zinc sulphate from industrial effluents by liquid-liquid extraction using D2EHPA (di-2-ethyl-hexylphosphoric acid), Separ. Purif. Technol., 2007, vol. 53, p. 89.CrossRefGoogle Scholar
  18. 18.
    Huang, T.C. and Juang, R.S., Transport of zinc through a supported liquid membrane using D2EHPA as a mobile carrier, J. Membr. Sci., 1987, vol. 31, nos. 2–3, p. 209.CrossRefGoogle Scholar
  19. 19.
    Golubev, V.N. and Purin, B.A., Investigation of the electrical breakdown of liquid membranes upon transfer of certain anions, Dokl. Akad. Nauk SSSR, 1977, vol. 232, no. 6, p. 1340.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Inorganic ChemistryRiga Technical UniversityRigaLatvia

Personalised recommendations