Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 5, pp 429–437 | Cite as

Facile Fabrication of Graphene/Mn3O4/Cu(OH)2 on Cu Foil as an Electrode for Supercapacitor Applications

  • H. N. Miankushki
  • A. SedghiEmail author
  • S. Baghshahi
Article

Abstract

To improve the specific capacitance of graphene based supercapacitor, new ternary graphene/Mn3O4/Cu(OH)2 composite was synthesized by two-step method. First, graphene/Mn3O4 composites with different weight ratio (G : Mn = 1 : 1, G : Mn = 1 : 4, G : Mn = 1 : 7 and G : Mn = 1 : 10) were synthesized by mixing and annealing method. Second, Cu(OH)2 rods were deposited on Cu foil. Afterwards, graphene/Mn3O4 composite powders were deposited on Cu(OH)2/Cu copper current collector as working electrodes. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The XRD analysis revealed the presence of graphene/Mn3O4. The presence of Mn3O4 was also confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy. Graphene/Mn3O4/Cu(OH)2 composite electrode with the weight ratio of G : Mn = 1 : 7 showed the best electrochemical performance and exhibited the largest specific capacitance of approximately 266 F g2−1 at the scan rate of 10 mV/s in 6 M KOH electrolyte. In addition, other electrochemical measurements (charge-discharge and EIS) of the G/Cu(OH)2/Cu, and G/Mn3O4/Cu(OH)2/Cu electrodes suggested that the G/Mn3O4/Cu(OH)2/Cu electrode is promising materials for supercapacitor application.

Keywords

graphene Mn3O4 composites Cu(OH)2/Cu foil supercapacitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, Z., Wang, C.Y., Ma, H.L., Liu, Z.H. and Hao, Z.P., Facilely synthesized Fe2O3-graphene nano-composite as novel electrode materials for supercapacitors with high performance, J. Alloys Compd., 2013, vol. 552, p. 486.CrossRefGoogle Scholar
  2. 2.
    Xiang, C., Li, M., Zhi, M., Manivannan, A., and Wu, N.Q., Reduced graphene oxide/titanium dioxide composite for supercapacitor electrodes: shape and coupling effects, J. Mater. Chem., 2012, vol. 22, p. 19161.CrossRefGoogle Scholar
  3. 3.
    Conway, B.E., Electrochemical Supercapacitors, NewYork: Plenum Press, 1999.CrossRefGoogle Scholar
  4. 4.
    Burke, A., Ultracapacitors: why, how, and where is the technology, J. Power Sources, 2000, vol. 91, p. 37.CrossRefGoogle Scholar
  5. 5.
    Zheng, J.P., Cygan, P.J., and Jow, T.R., Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc., 1995, vol. 142, p. 2699.CrossRefGoogle Scholar
  6. 6.
    Huang, C.-C., Hu, Y.-H., and Chang, K.-H., Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors, J. Power Sources, 2002, vol. 108, p. 117.CrossRefGoogle Scholar
  7. 7.
    Zhu, G., Li, H.J., Deng, L.J., and Liu, Z.H., Low-temperature synthesis of 5-MnO2 with large surface area and its capacitance, Mater. Lett., 2010, vol. 64, p. 1763.CrossRefGoogle Scholar
  8. 8.
    Dubal, D.P., Dhawale, D.S., Salunkhe, R.R., Fulari, V.J., and Lokhande, C.D., Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application, J. Alloys Compd., 2010, vol. 497, p. 166.CrossRefGoogle Scholar
  9. 9.
    Liu, T.-C., Pell, W.G., and Conway, B.E., Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance, Electrochim. Acta, 1999, vol. 44, p. 2829.CrossRefGoogle Scholar
  10. 10.
    Yuan, C., Zhang, X., Su, L., Gao, B., and Shen, L., Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors, Mater. Chem. A, 2009, vol. 19, p. 5772.CrossRefGoogle Scholar
  11. 11.
    Lang, X., Hirata, A., Fujita, T., and Chen, M., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnol., 2011, vol. 6, p. 232.CrossRefGoogle Scholar
  12. 12.
    Zhang, S.W. and Chen, G.Z., Manganese oxide based materials for supercapacitors, Energy Mater., 2008, vol. 3, p. 186.CrossRefGoogle Scholar
  13. 13.
    Takahashi, K., Dry cell and battery industry and powder technology with emphasis on powdered manganese dioxide, Electrochim. Acta, 1981, vol. 26, p. 1467.CrossRefGoogle Scholar
  14. 14.
    Chang, K.H., Lee, Y.F., Hu, C.C., Chang, C.I., Liu, C.L., and Yang, Y., A unique strategy for preparing single-phase unitary/binary oxides-graphene composites, Chem. Commun., 2010, vol. 46, p. 7957.CrossRefGoogle Scholar
  15. 15.
    Liu, Y., He, D., Wu, H., and Duan, J., Graphene and nanostructured Mn3O4 composites for supercapacitors, Integr. Ferroelectr, 2013, vol. 144, p. 118.CrossRefGoogle Scholar
  16. 16.
    Wu, Y., Liu, S., Wang, H., Wang, X., Zhang, X., and Jin, G., A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors, Electrochim. Acta, 2013, vol. 90, p. 210.CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Sun, X., Chen, Y., and Zhang, D., One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for super-capacitors, Mater. Lett, 2012, vol. 68, p. 336.CrossRefGoogle Scholar
  18. 18.
    Lee, J.W., Hall, A.S., Kim, J.-D., and Mallouk, T.E., A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability, Chem. Mater., 2012, vol. 24, p. 115.CrossRefGoogle Scholar
  19. 19.
    Blomquist, N., Wells, T., Andres, B., Backstrom, J., Forsberg, S., and Olin, H., Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials, Sci. Rep., 2017, vol. 7, p. 39836.CrossRefGoogle Scholar
  20. 20.
    Gheytani, S., Liang, Y., Jing, Y., Xu, J.Q., and Yao, Y., Chromate conversion coated aluminium as a lightweight and corrosion-resistant current collector for aqueous lithium-ion batteries, Mater. Chem. A, 2016, vol. 4, p. 395.CrossRefGoogle Scholar
  21. 21.
    Wang, X., Chen, Ch., Chen, K., Chen, H., and Shao Jun Yuan, MnO2 nanosheets-decorated CuO nanoneedles arrays@Cu foils for supercapacitors, Int. J. Electrochem. Sci., 2016, vol. 11, p. 3425.CrossRefGoogle Scholar
  22. 22.
    Bose, S., Kim, N.H., Kuila, T., Lau, K., and Lee, J.H., Electrochemical performance of a graphene-polypyr-role nanocomposite as a supercapacitor electrode, Nano-technology, 2011, vol. 22, p. 369502.Google Scholar
  23. 23.
    Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., Recent advances in graphene based polymer composites, Prog. Polym. Sci., 2010, vol. 35, p. 1350.CrossRefGoogle Scholar
  24. 24.
    Rosaiah, P., Jinghui, Z., Dadamiah P.M.D. Shaik Hussain, O.M., Qiu, Y., and Zhao, L., Reduced graphene oxide/Mn3O4 nanocomposite electrodes with enhanced electrochemical performance for energy storage applications, J. Electroanal. Chem., 2017, vol. 794, pp. 78–85.CrossRefGoogle Scholar
  25. 25.
    Liao, Q.Y., Li, S.Y., Cui, H., and Wang, C.H., Vertically-aligned graphene@Mn3O4 nanosheets for a highperformance flexible all-solid-state symmetric super-capacitor, J. Mater. Chem. A, 2016, vol. 4, p. 8830.CrossRefGoogle Scholar
  26. 26.
    Zhou, T., Mo, Sh., Zhou, Sh., Zou, W., Liu, Y., and Yuan, D., Mn3O4/worm-like mesoporous carbon synthesized via a microwave method for supercapacitors, J. Mater. Sci., 2011, vol. 46, p. 3337.CrossRefGoogle Scholar
  27. 27.
    Panpan Xu, Ke Ye, Mengmeng Du, Jijun Liu, Kui Cheng, Jinling Yin, Guiling Wang, and Dianxue Cao, One-step synthesis of copper compounds on copper foil and their supercapacitive performance, RSC Adv., 2015, vol. 5, p. 36656.CrossRefGoogle Scholar
  28. 28.
    Yang, Y., Zeng, B., Liu, J., Long, Y., Li, N., Wen, Z., and Jiang, Y., Graphene/MnO2 composite prepared by a simple method for high performance supercapacitor, Mater. Res. Innov, 2016, vol. 20, no. 2.Google Scholar
  29. 29.
    Sathyamoorthy, R. and Mageshwari, K., Synthesis of hierarchical CuO microspheres: photocatalytic and antibacterial activities, Phys. E, 2013, vol. 47, p. 157.CrossRefGoogle Scholar
  30. 30.
    Momeni, M.M., Nazari, Z., Kazempour, A., Hakimiyan, M., and Mirhoseini, S.M., Preparation of CuO nanostructures coating on copper as supercapacitor materials, Surf. Eng., 2014, vol. 30, p. 775.CrossRefGoogle Scholar
  31. 31.
    Pramanik, A., Maiti, S., and Mahanty, S., Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor, Dalton Trans., 2015, vol. 44, p. 14604.CrossRefGoogle Scholar
  32. 32.
    Chen, J., Xu, J., Zhou, Sh., Zhao, N., and Wong, C.P., J. Mater. Chem. A, 2015, vol. 3, p. 17385.CrossRefGoogle Scholar
  33. 33.
    Yuan, R.M., Li, H.J., Yin, X.M., Lu, J.H., and Zhang, L., 3D CuO nanosheet wrapped nanofilm grown on Cu foil for high performance non-enzymatic glucose biosensor electrode, Talanta, 2017, vol. 174, p. 514.CrossRefGoogle Scholar
  34. 34.
    Hsu, Y.K., Chen, Y.C., and Lin, Y.G., Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes, J. Electroanal. Chem., 2012, vol. 673, p. 43.CrossRefGoogle Scholar
  35. 35.
    Zhang, F., Zhang, X.G., and Hao, L., Solution synthesis and electrochemical capacitance performance of Mn3O4 polyhedral nanocrystals via thermolysis of a hydrogen-bonded polymer, J. Mater. Chem. Phys., 2011, vol. 126, p. 853.CrossRefGoogle Scholar
  36. 36.
    Lim, C.H., Ng, H.N., Lim, Y.S., Chee, W.K., and Huang, N.M., Fabrication of flexible polypyr-role/graphene oxide/manganese oxide supercapacitor, Int. J. Energy Res., 2015, vol. 39, no. 3, pp. 344–355.CrossRefGoogle Scholar
  37. 37.
    Wang, Y., Re, J., Huang, X., and Ding, J., The synthesis of polypyrrole@Mn3O4/reduced graphene oxide anode with improved coulombic efficiency, J. Electrochim. Acta, 2015, vol. 186, p. 345.CrossRefGoogle Scholar
  38. 38.
    Sun, W., Chen, L., Wang, Y., Zhou, Y., Meng, Sh., Li, H., and Luo, Y., Synthesis of highly conductive PPy/Graphene/MnO2 composite using ultrasonic irradiation, J. Synth. React. Inorg. Metal Organic Nano-Metal Chem., 2016, vol. 46, p. 437.CrossRefGoogle Scholar
  39. 39.
    Fathi, M., Saghafi, M., Mahboubi, F., and Mohajerzadeh, S., Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors, Synth. Met., 2014, vol. 198, p. 345.CrossRefGoogle Scholar
  40. 40.
    Ng, C.H., Lim, H.N., Lim, Y.S., Chee, W.K., and Huang, N.M., Fabrication of flexible polypyr-role/graphene oxide/manganese oxide supercapacitor, Int. J. Energy Res, 2015, vol. 39, p. 344.CrossRefGoogle Scholar
  41. 41.
    Zhu, L., Zhang, S., Cui, Y., Song, H., and Chen, X., One step synthesis and capacitive performance of graphene nanosheets/Mn3O4 composite, Electrochim. Acta, 2013, vol. 89, p. 18.CrossRefGoogle Scholar
  42. 42.
    Gund, G.S., Dubal, D.P., Patil, B.H., Shindea, S.S., and Lokhandea, C.D., Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors, Electrochim. Acta, 2013, vol. 92, p. 205.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations