Russian Journal of Electrochemistry

, Volume 55, Issue 5, pp 392–400 | Cite as

Electrochemical Behavior of Si(IV) on the Mo Electrode in the CaCl2–CaF2–CaO–SiO2 Melt

  • Jidong LiEmail author
  • Hao Ren
  • Xiao Yin
  • Jinlin Lu
  • Jing Li


This work concerns a study on investigating the electrochemical behaviors of silicon using the molybdenum electrode in molten CaCl2–CaF2–CaO–SiO2 at 1023 K, by means of linear scan voltammetry, square wave voltammetry, chronoamperometry, open circuit chronopotentiometry, reversal chronopotentiometry and polarization curve. The results based on the linear scan voltammetry showed that reduction of Si(IV) in CaCl2–CaF2–CaO–SiO2 melt proceeds in a single step exchanging four electrons, which is a reversible process with diffusion-controlled mass transfer, and the diffusion coefficient for the reduction process of Si(IV) ions in CaCl2–CaF2–CaO (3.68 wt %)–SiO2 (4 wt %) is about 1.11 × 10−4 cm2 s−1, at 1023 K. The reversibility of the Si(IV)/Si redox couple on the molybdenum electrode is confirmed via linear scan voltammetry. Chronoamperometric measurements indicated that the I–t transients of Si(IV) follow instantaneous nucleation with varied the applied overpotential. Furthermore, the sample deposited on the molybdenum electrode using potentiostatic electrolysis was identified by X-ray diffraction (XRD). The XRD result indicates that the obtained deposits were Si and MoSi2.


electrochemical behavior linear scan voltammetry chronoamperometry electrodeposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nohira, T., Ido, A., Shimao, T., Yang, X., Yasuda, K., Hagiwara, R., and Homma, T., A new electrolytic production process of silicon using liquid Zn alloy cathode in molten salt, Ecs Trans., 2016, vol. 75, no. 15, pp. 17.CrossRefGoogle Scholar
  2. 2.
    Ergül, E., Karakaya, I., and Erdoğan, M., Electrochemical decomposition of SiO2 pellets to form silicon in molten salts, J. Alloys Compd., 2011, vol. 509, no. 3, pp. 899.CrossRefGoogle Scholar
  3. 3.
    Mazumder, B., Silicon and It’s Compounds, Science Publ., 2001.Google Scholar
  4. 4.
    Cho, S.K., Fan, F.R., and Bard, A.J., Electrodeposition of crystalline and photoactive silicon directly from silicon dioxide nanoparticles in molten CaCl2, Angew. Chem. Int. Ed., 2012, vol. 124, no. 51, pp. 12740.CrossRefGoogle Scholar
  5. 5.
    Woditsch, P. and Koch, W., Solar grade silicon feedstock supply for PV industry, Sol. Energy Mat. Sol. C, 2002, vol. 72, nos. 1–4, p. 11.CrossRefGoogle Scholar
  6. 6.
    Loutzenhiser, P.G., Tuerk, O., and Steinfeld, A., Production of Si by vacuum carbothermal reduction of SiO2 using concentrated solar energy, J. Org. Mater., 2010, vol. 62, no. 9, pp. 49.Google Scholar
  7. 7.
    Müller, A., Ghosh, M., Sonnenschein, R., and Woditsch, P., Silicon for photovoltaic application, Mater. Sci. Eng. B, 2006, vol. 134, nos. 2–3, p. 257.CrossRefGoogle Scholar
  8. 8.
    Chen, G.Z., Fray, D.J., and Farthing, T.W., Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 2000, vol. 407, no. 6802, pp. 361.CrossRefGoogle Scholar
  9. 9.
    Bukatova, G.A., Kuznetsov, S.A., and Gaune, E.M., Electrochemical synthesis of rare-Earth metal (Eu, Nd) borides in molten salts, Russ. J. Electrochem., 2007, vol. 43, no. 8, pp. 929.CrossRefGoogle Scholar
  10. 10.
    Liu, K., Tang, H.-B., Pang, J.-W., Liu, Y.-L., Feng, Y.-X., Chai, Z.-F., and Shi, W.-Q., Electrochemical properties of uranium on the liquid gallium electrode in LiCl–KCl eutectic, J. Electrochem. Soc., 2016, vol. 163, no. 9, p. D554.CrossRefGoogle Scholar
  11. 11.
    Yan, Y.-D., Zhang, M.-L., Han, W., Cao, D.-X., Yuan, Y., Xue, Y., and Chen, Z., Electrochemical formation of Mg-Li alloys at solid magnesium electrode from LiCl–KCl melts, Electrochim. Acta, 2008, vol. 53, no. 8, pp. 3323.CrossRefGoogle Scholar
  12. 12.
    Castrillejo, Y., Bermejo, M.R., Barrado, E., and Martinez, A.M., Electrochemical behaviour of erbium in the eutectic LiCl-KCl at W and Al electrodes, Electrochim. Acta, 2006, vol. 51, no. 10, pp. 1941.CrossRefGoogle Scholar
  13. 13.
    Castrillejo, Y., Fernandez, P., Medina, J., Hernandez, P., and Barrado, E., Electrochemical extraction of samarium from molten chlorides in pyrochemical processes, Electrochim. Acta, 2011, vol. 56, no. 24, pp. 8638.CrossRefGoogle Scholar
  14. 14.
    Liu, Y.-L., Yan, Y.-D., Han, W., Zhang, M.-L., Yuan, L.-Y., Liu, K., Ye, G.-A., He, H., Chai, Z.-F., and Shi, W.-Q., Extraction of thorium from LiCl–KCl molten salts by forming Al–Th alloys: a new pyrochemical method for the reprocessing of thorium-based spent fuels, RSC Adv., 2013, vol. 3, no. 45, pp. 23539.CrossRefGoogle Scholar
  15. 15.
    Liu, Y.-L., Yan, Y.-D., Han, W., Zhang, M.-L., Yuan, L.-Y., Lin, R.-S., Ye, G.-A., He, H., Chai, Z.-F., and Shi, W.-Q., Electrochemical separation of Th from ThO2 and Eu2O3 assisted by AlCl3 in molten LiCl–KCl, Electrochim. Acta, 2013, vol. 114, p. 180.CrossRefGoogle Scholar
  16. 16.
    Novoselova, A.V. and Smolenskii, V.V., Electrochemical study of the properties of Nd(III) and Nd(II) ions in molten LiCl-KCl-CsCl eutectic and individual CsCl, Russ. J. Electrochem., 2013, vol. 49, no. 10, pp. 931.CrossRefGoogle Scholar
  17. 17.
    Barrado, E., Castrillejo, Y., Bermejo, M.R., and Rosa, F.D.L., Cathodic behaviour of europium(III) on glassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in the eutectic LiCl-KCl, J. Electroanal. Chem., 2007, vol. 603, no. 1, pp. 81.CrossRefGoogle Scholar
  18. 18.
    Gibilaro, M., Massot, L., Chamelot, P., Cassayre, L., and Taxil, P., Electrochemical extraction of europium from molten fluoride media, Electrochim. Acta, 2009, vol. 55, no. 1, pp. 281.CrossRefGoogle Scholar
  19. 19.
    Nohira, T., Yasuda, K., and Ito, Y., Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon, Nat. Mater., 2003, vol. 2, no. 6, pp. 397.CrossRefGoogle Scholar
  20. 20.
    Jin, X.-B., Gao, P., Wang, D.-H., Hu, X.-H., and Chen, G.-Z., Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride, Angew. Chem., 2004, vol. 43, no. 6, pp. 733.CrossRefGoogle Scholar
  21. 21.
    Yang, X., Ji, L., Zou, X., Lim, T., Zhao, J., Yu, E.T., and Bard, A.J., Effective manufacturing of Silicon solar cells: electrodeposition of high-quality Si films in a CaCl2-based molten salt, Angew. Chem., 2017, vol. 56, no. 74 p. 15078.CrossRefGoogle Scholar
  22. 22.
    Cai, J., Luo, X.-T., Haarberg, G.M., Kongstein, O.E., and Wang, S.L., Electrorefining of metallurgical grade silicon in molten CaCl2 based salts, J. Electrochem. Soc., 2012, vol. 159, no. 3, p. D155.CrossRefGoogle Scholar
  23. 23.
    Elwell, D. and Rao, G.M., Mechanism of electrodeposition of silicon from K2SiF6-flinak, Electrochim. Acta, 1982, vol. 27, no. 6, pp. 673.CrossRefGoogle Scholar
  24. 24.
    Rao, G.M., Elwell, D., and Feigelson, R.S., Electrowinning of silicon from K2SiF6-molten fluoride systems, J. Electrochem. Soc., 1980, vol. 127, no. 9, pp. 1940.CrossRefGoogle Scholar
  25. 25.
    Cohen, U., Silicon epitaxial growth by electrodeposition from molten fluorides, J. Electrochem. Soc., 1976, vol. 123, no. 3, pp. 381.CrossRefGoogle Scholar
  26. 26.
    Boen, R. and Bouteillon, J., The electrodeposition of silicon in fluoride melts, J. Appl. Electrochem., 1983, vol. 13, no. 3, pp. 277.CrossRefGoogle Scholar
  27. 27.
    Cai, Z.-Y., Li, Y.-G., He, X.-F., and Liang, J.-L., Electrochemical behavior of silicon in the (NaCl–KCl–NaF–SiO2) molten salt, Metall. Mater. Trans. B, 2010, vol. 41, no. 5, pp. 1033.CrossRefGoogle Scholar
  28. 28.
    Hu, Y.-J., Wang, X., Xiao, J.-S., Hou, J.-G., Jiao, S.-Q., and Zhu, H.-M., Electrochemical behavior of silicon(IV) ion in BaF2–CaF2–SiO2 melts at 1573 K, J. Electrochem. Soc., 2013, vol. 160, no. 3, p. D81.CrossRefGoogle Scholar
  29. 29.
    Bieber, A.L., Massot, L., Gibilaro, M., Cassayre, L., Taxil, P., and Chamelot, P., Silicon electrodeposition in molten fluorides, Electrochim. Acta, 2012, vol. 62, p. 282.CrossRefGoogle Scholar
  30. 30.
    Sokhanvaran, S. and Barati, M., Electrochemical behavior of silicon species in cryolite melt, J. Electrochem. Soc., 2014, vol. 161, no. 1, p. E6.CrossRefGoogle Scholar
  31. 31.
    Haarberg, G.M., Famiyeh, L., Martinez, A.M., and Osen, K.S., Electrodeposition of silicon from fluoride melts, Electrochim. Acta, 2013, vol. 100, p. 226.CrossRefGoogle Scholar
  32. 32.
    Maeda, K., Yasuda, K., Nohira, T., Hagiwara, R., and Homma, T., Silicon electrodeposition in water-Soluble KF-KCl molten salt: investigations on the reduction of Si (IV) ions, J. Electrochem. Soc., 2015, vol. 162, no. 9, p. D444.CrossRefGoogle Scholar
  33. 33.
    Galyus, Z., Theoretical Basics of Electrochemical Analysis, Mir Publishing House, 1974.Google Scholar
  34. 34.
    Kuznetsova, S.V., Dolmatov, V.S., and Kuznetsov, S.A., Voltammetric study of electroreduction of silicon complexes in a chloride-fluoride melt, Russ. J. Electrochem., 2009, vol. 45, no. 7, pp. 742.CrossRefGoogle Scholar
  35. 35.
    Xu, L., Xiao, Y.-P., Xu, Q., Sandwijk, A.V., Li, J.-D., Zhao, Z., and Yang, Y.-X., Electrochemical behavior of zirconium in molten LiF–KF–ZrF4 at 600°C, RSC Adv., 2016, vol. 6, no. 87, pp. 84472.CrossRefGoogle Scholar
  36. 36.
    Liu, Y.-L., Yuan, L.-Y., Ye, G.-A., Zhang, M.-L., He, H., Tang, H.-B., Lin, R.-S., and Shi, W.-Q., Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm–Zn alloys, Electrochim. Acta, 2014, vol. 120, p. 369.CrossRefGoogle Scholar
  37. 37.
    Chamelot, P., Taxil, P., and Lafage, B., Voltammetric studies of tantalum electrodeposition baths, Electrochim. Acta, 1994, vol. 39, no. 17, pp. 2571.CrossRefGoogle Scholar
  38. 38.
    Luo, L.-X., Liu, Y.-L., Liu, N., Liu, K., Yuan, L.-Y., Chai, Z.-F., and Shi, W.-Q., Electroreduction-based Tb extraction from Tb4O7 on different substrates: understanding Al–Tb alloy formation mechanism in LiCl–KCl melt, RSC Adv., 2015, vol. 5, no. 85, pp. 69134.CrossRefGoogle Scholar
  39. 39.
    Serrano, K. and Taxil, P., Electrochemical reduction of trivalent uranium ions in molten chlorides, J. Appl. Electrochem., 1999, vol. 29, no. 4, pp. 497.CrossRefGoogle Scholar
  40. 40.
    Allongue, P. and Souteyrand, E., Experimental investigation of charge transfer at the semiconductor/electrolyte junction, Electrochim. Acta, 1992, vol. 37, no. 5, pp. 781.CrossRefGoogle Scholar
  41. 41.
    Zhou, B.Z. and Chen, Y.Y., Basic Tutorial of Electrode Process Dynamics, Wu Han: Wuhan University Press, 1987.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Jidong Li
    • 1
    Email author
  • Hao Ren
    • 1
  • Xiao Yin
    • 1
  • Jinlin Lu
    • 1
  • Jing Li
    • 1
  1. 1.School of Materials and MetallurgyUniversity of Science and Technology LiaoningAnshanChina

Personalised recommendations