Russian Journal of Electrochemistry

, Volume 55, Issue 5, pp 419–428 | Cite as

Synthesis, Characterization, in vitro Antifungal Activities and Calf Thymus DNA Interactions of Two Different Hydroxy Benzaldehyde Derivative Schiff Bases from Sulfamethizole: Electrochemical, Spectroscopic and Biological Study

  • Ender BiçerEmail author
  • Vahide Pehlivan
  • Yeliz Genç Bekiroğlu


In the present work, the Schiff bases were synthesized by reacting sulfamethizole (SMTZ) with two different hydroxy benzaldehydes (2,3-dihydroxy benzaldehyde (DHBA) and 2,4,6-trihydroxy benzaldehyde (THBA)) and characterized by elemental analysis, 1H-NMR and IR spectroscopies. From the obtained data, it was suggested that 4,6-dihydroxy salicylaldehyde reacted with both primary and secondary amine groups of SMTZ. The binding properties between the synthesized Schiff bases and calf thymus DNA (CT-DNA) at the physiological pH (7.4) was investigated by using cyclic voltammetry and UV-Vis spectroscopy techniques. The experimental results verify that the Schiff bases can bind to CT-DNA by electrostatic mode in 1 : 1 stoichiometry. Antifungal activities of the synthesized Schiff bases against Candida albicans ATCC 10231 were studied and their minimum inhibitory concentrations (MIC) were also determined. The MIC value of the Schiff base 1 synthesized from DHBA is smaller than that of the Schiff base 2 obtained from THBA. Although Schiff base 2 binds to CT-DNA with a higher affinity than Schiff base 1, it is less effective than Schiff base 1 against Candida albicans.


calf thymus DNA interaction salicylaldehyde derivatives Schiff bases sulfamethizole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was presented in part and in poster form at International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2018), 26–27 April 2018, Ankara/TURKEY.


  1. 1.
    Khan, F., Khan, S., Athar, A., Ahmed, W., Zia-ul-Haq, and Khan, Z., Synthesis, spectral characterization and antibacterial study of a Schiff base metal complexes derived from N-[(E)-(5-chloro-2-hydroxyphenyl)methylidene]-4-nitrobenzenesulfonamide, Amer.- Eur. J. Agric. Environ. Sci., 2015, vol. 15, p. 216.Google Scholar
  2. 2.
    Kumar, G., Kumar, D., Singh, C.P., Kumar, A., and Rana, V.B., Synthesis, physical characterization and antimicrobial activity of trivalent metal Schiff base complexes, J. Serb. Chem. Soc., 2010, vol. 75, p. 629.CrossRefGoogle Scholar
  3. 3.
    Xiao, Y.-J., Diao, Q.-C., Liang, Y.-H., and Zeng, K., Two novel Co(II) complexes with two different Schiff bases: inhibiting growth of human skin cancer cells, Braz. J. Med. Biol. Res., 2017, vol. 50, p. e6390.Google Scholar
  4. 4.
    Han, R., Sun, Y., Kang, C., Sun, H., and Wei, W., Amphiphilic dendritic nanomicelle-mediated co-delivery of 5-fluorouracil and doxorubicin for enhanced therapeutic efficacy, J. Drug Target., 2017, vol. 25, p. 140.CrossRefGoogle Scholar
  5. 5.
    Sohrabi, N., Rasouli, N., and Kamkar, M., Synthesis, characterization and DNA interaction studies of (N,N′-bis(5-phenylazosalicylaldehyde)-ethylenediamine) cobalt(II) complex, Bull. Korean Chem. Soc., 2014, vol. 35, p. 2523.CrossRefGoogle Scholar
  6. 6.
    Ni, Y., Lin, D., and Kokot, S., Synchronous fluorescence and UV-Vis spectrometric study of the competitive interaction of chlorpromazine hydrochloride and neutral red with DNA using chemometrics approaches, Talanta, 2005, vol. 65, p. 1295.CrossRefGoogle Scholar
  7. 7.
    Temerk, Y. and Ibrahim, H., Electrochemical studies and spectroscopic investigations on the interaction of an anticancer drug flutamide with DNA and its analytical applications, J. Electroanal. Chem., 2015, vol. 736, p. 1.CrossRefGoogle Scholar
  8. 8.
    Carter, M.T. and Bard, A.J., Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt(III) with DNA, J. Am. Chem. Soc., 1987, vol. 109, p. 7528.CrossRefGoogle Scholar
  9. 9.
    Ahmadi, F., Alizadeh, A.A., Bakhshandeh-Saraskanrood, F., Jafari, B., and Khodadadian, M., Experimental and computational approach to the rational monitoring of hydrogen-bonding interaction of 2-imidazoli-dinethione with DNA and guanine, Food Chem. Toxicol., 2010, vol. 48, p. 29.CrossRefGoogle Scholar
  10. 10.
    Ahmadi, F. and Jafari, B., Voltammetry and spectroscopy study of in vitro interaction of fenitrothion with DNA, Electroanalysis, 2011, vol. 23, p. 675.Google Scholar
  11. 11.
    Cox, P.J., Psomas, G., and Bolos, C.A., Characterization and DNA-interaction studies of 1,1-dicyano-2,2-ethylene dithiolate Ni(II) mixed-ligand complexes with 2-amino-5-methyl thiazole, 2-amino-2-thiazoline and imidazole. Crystal structure of [Ni(i-MNT)(2a-5mt)2], Bioorg. Med. Chem., 2009, vol. 17, p. 6054.CrossRefGoogle Scholar
  12. 12.
    Gao, F., Wang, Q., Zheng, M., Li, S., Chen, G., Jiao, K., and Gao, F., Electrochemical studies on the recognition of a ternary copper complex to single-stranded DNA and double-stranded DNA, Int. J. Electrochem. Sci, 2011, vol. 6, p. 1508.Google Scholar
  13. 13.
    Zhang, X., Li, M., Cui, Y., Zhao, J., Cui, Z., Li, Q., and Qu, K., Electrochemical behavior of calcein and the interaction between calcein and DNA, Electroanalysis, 2012, vol. 24, p. 1878.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Petrikaitè, V., Tarasevičius, E., and Pavilonis, A., New thiazolidones-4 with sulfamethizole-2 substituent as potential antifungal and antimicrobial preparations, Biologija, 2007, vol. 53, p. 45.Google Scholar
  16. 16.
    Pehlivan, V, Biçer, E., Genç Bekiroğlu, Y., and Dege, N., Synthesis, in vitro antibacterial activity and calf thymus DNA binding of sulfamethizole-based Schiff bases, Abstract E-Book, 4th Int. Türk-Pak Conf. on Chemical Sciences (ITPCCS 2017), Konya, Oct. 26–28, 2017, PP017.Google Scholar
  17. 17.
    Omanović, D. and Branica, M., Automation ofvoltammetric measurements by polarographic analyser PAR 384B, Croat. Chem. Acta, 1998, vol. 71, p. 421.Google Scholar
  18. 18.
    Hajian, R., Ekhlasi, E., and Daneshvar, R., Spectroscopic and electrochemical studies on the interaction of epirubicin with fish sperm DNA, E-J. Chem., 2012, vol. 9, p. 1587.CrossRefGoogle Scholar
  19. 19.
    Naik, T.R.R. and Naik, H.S.B., Electrochemical investigation of DNA binding on carbaldehyde oxime by cyclic voltammetry, Int. J. Electrochem. Sci., 2008, vol. 3, p. 409.Google Scholar
  20. 20.
    Babkina, S.S. and Ulakhovich, N.A., Complexing of heavy metals with DNA and new bioaffinity method of their determination based on amperometric DNA-based biosensor, Anal. Chem., 2005, vol. 77, p. 5678.CrossRefGoogle Scholar
  21. 21.
    Shah, A., Zaheer, M., Qureshi, R., Akhter, Z., and Nazar, M.F., Voltammetric and spectroscopic investigations of 4-nitrophenylferrocene interacting with DNA, Spectrochim. Acta Part A, 2010, vol. 75, p. 1082.CrossRefGoogle Scholar
  22. 22.
    Asghar, F., Badshah, A., Shah, A., Rauf, M.K., Ali, M.I., Tahir, M.N., Nosheen, E., Zia-ur-Rehman, and Qureshi, R., Synthesis, characterization and DNA binding studies of organoantimony(V) ferrocenyl benzoates, J. Organomet. Chem., 2012, vol. 717, p. 1.CrossRefGoogle Scholar
  23. 23.
    Hua, D. and Chung, T.-S., Universal surface modification by aldehydes on polymeric membranes for isopropanol dehydration via pervaporation, J. Membrane Sci., 2015, vol. 492, p. 197.CrossRefGoogle Scholar
  24. 24.
    Sprung, M.A., A summary of the reactions of aldehydes with amines, Chem. Rev., 1940, vol. 26, p. 297.CrossRefGoogle Scholar
  25. 25.
    Huang, A. and Caro, J., Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity, Angew. Chem. Int. Ed., 2011, vol. 50, p. 4979.CrossRefGoogle Scholar
  26. 26.
    Patil, M.P. and Sunoj, R.B., Insights on co-catalyst-promoted enamine formation between dimethylamine and propanal through ab initio and density functional theory study, J. Org. Chem., 2007, vol. 72, p. 8202.CrossRefGoogle Scholar
  27. 27.
    Chatziefthimiou, S.D., Lazarou, Y.G., Hadjoudis, E., Dziembowska, T., and Mavridis, I.M., Keto forms of salicylaldehyde Schiff bases: structural and theoretical aspects, J. Phys. Chem. B, 2006, vol. 110, p. 23701.CrossRefGoogle Scholar
  28. 28.
    Filarowski, A. and Majerz, I., AIM analysis of intramolecular hydrogen bonding in O-hydroxy aryl Schiff bases, J. Phys. Chem. A, 2008, vol. 112, p. 3119.CrossRefGoogle Scholar
  29. 29.
    Filarowski, A., Intramolecular hydrogen bonding in o-hydroxyaryl Schiff bases, J. Phys. Org. Chem., 2005, vol. 18, p. 686.CrossRefGoogle Scholar
  30. 30.
    Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed., Wayne: Clinical and Laboratory Standards Institute, 2008. Approved Standard no. M27-S3.Google Scholar
  31. 31.
    Meti, M.D., Abbar, J.C., Nandibewoor, S.T., and Chimatadar, S.A., Voltammetric oxidation of carbenicillin and its electro analytical applications at gold electrode, Cogent Chem., 2016, vol. 2, p. 1. Google Scholar
  32. 32.
    Gosser, D.K., Cyclic Voltammetry:Simulation and Analysis of Reaction Mechanisms, New York: VCH, 1993, p. 43.Google Scholar
  33. 33.
    Pedrero, M., de Villena, F.J.M., Pingarron, J.M., and Polo, L.M., Determination of dinoseb by adsorptive stripping voltammetry, Electroanalysis, 1991, vol. 3, p. 419.CrossRefGoogle Scholar
  34. 34.
    Giannakopoulos, E., Deligiannakis, Y., and Salahas, G., Electrochemical interfacial adsorption mechanism of polyphenolic molecules onto Hanging Mercury Drop Electrode surface (HMDE), J. Electroanal. Chem., 2012, vol. 664, p. 117.CrossRefGoogle Scholar
  35. 35.
    Coşkun, E. and Biçer, E., Sülfatiazolün Ni(II) iyonlariyla etkileşiminin voltametrik incelenmesi, Erciyes Univ. J. Inst. Sci. Technol., 2014, vol. 30, p. 296.Google Scholar
  36. 36.
    Sabry, S.M., Barary, M.H., Abdel-Hay, M.H., and Belal, T.S., Adsorptive stripping voltammetric behaviour of azomethine group in pyrimidine-containing drugs, J. Pharm. Biomed. Anal., 2004, vol. 34, p. 509.CrossRefGoogle Scholar
  37. 37.
    Habib, I.H.I., Weshahyi, S.A., Toubar, S., and El-Alamin, M.M.A., Cathodic stripping voltammetric determination of losartan in bulk and pharmaceutical products, Portug. Electrochim. Acta, 2008, vol. 26, p. 315.CrossRefGoogle Scholar
  38. 38.
    Manousek, O., Exner, O., and Zuman, P., Fission of activated carbon-nitrogen and carbon-sulphur bonds. XI. Polarographic reduction of substituted benzene-sulphoamides, in Topics on Organic Polarography, Zuman, P., Ed., London: Plenum Press, 1970, p. 322.CrossRefGoogle Scholar
  39. 39.
    Chambers, J.Q., Organic sulphur compounds, in Encyclopedia of Electrochemistry of the Elements, Bard, A.J. and Lund, H., Eds., vol. XII: Organic Section, New York: M. Dekker, 1979, chapter XII-3, p. 371.Google Scholar
  40. 40.
    Smyth, M.R. and Smyth, W.F., Voltammetric methods for the determination of foreign organic compounds of biological significance, Analyst, 1978, vol. 103, p. 529.CrossRefGoogle Scholar
  41. 41.
    Çakir, S. and Biçer, E., Synthesis, spectroscopic and electrochemical characteristics of a novel Schiff-base from saccharin and tryptophan, J. Iran. Chem. Soc., 2010, vol. 7, p. 394.CrossRefGoogle Scholar
  42. 42.
    Carter, M.T., Rodriguez, M., and Bard, A.J., Voltam-metric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine, J. Am. Chem. Soc., 1989, vol. 111, p. 8901.CrossRefGoogle Scholar
  43. 43.
    Tung, Y.-L., Lee, S.-W., Chi, Y., Chen, L.-S., Shu, C.-F., Wu, F.-I., Carty, A.J., Chou, P.-T., Peng, S.-M., and Lee, G.-H., Organic light-emitting diodes based on charge-neutral RuII phosphorescent emitters, Adv. Mater., 2005, vol. 17, p. 1059.CrossRefGoogle Scholar
  44. 44.
    Pakravan, P. and Masoudian, S., Study on the interaction between isatin-ß-thiosemicarbazone and calf thymus DNA by spectroscopic techniques, Iran. J. Pharm. Res., 2015, vol. 14, p. 111.Google Scholar
  45. 45.
    Mallappa, M., Gowda, B.G., and Mahesh, R.T., Mechanism of interaction of antibacterial drug moxifloxacin with herring sperm DNA: electrochemical and spectroscopic studies, Der Pharma Chem., 2014, vol. 6, p. 398.Google Scholar
  46. 46.
    Jiang, Y., Yuan, Y., Wang, K., Li, H., Xu, C., and Yang, X., Spectroscopic and electrochemical studies on the binding of pyrocatechol violet with telomere DNA and its application, Int. J. Electrochem. Sci., 2012, vol. 7, p. 10933.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Ender Biçer
    • 1
    Email author
  • Vahide Pehlivan
    • 1
  • Yeliz Genç Bekiroğlu
    • 2
  1. 1.Department of Chemistry, Faculty of Arts and SciencesOndokuz Mayıs UniversityAtakum-SamsunTurkey
  2. 2.Department of Herbal and Animal Production, Bafra Vocational SchoolOndokuz Mayıs UniversityBafra-SamsunTurkey

Personalised recommendations