Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 5, pp 364–369 | Cite as

Influence of Manganese Ions on the Electrodeposition Process of Lead Dioxide in Lead Nitrate Solution

  • Yingwu YaoEmail author
  • Chunjiao Huang
  • Haishu Dong
  • Feng WeiEmail author
  • Xin Chen
Article
  • 3 Downloads

Abstract

The influence of manganese ions on the electrodeposition process of lead dioxide on the glassy carbon electrode (GCE) in the lead nitrate solution was investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results show that the electrodeposition process of lead dioxide was inhibited by the addition of manganese ions. However, the nucleation model is not influenced by the addition of manganese ions and the electrodeposition process still fits the instantaneous nucleation model with three-dimensional growth according to Scharifker—Hills’ model.

Keywords

chronoamperometry cyclic voltammetry electrocrystallization lead dioxide manganese ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramirez, G., Recio, F.J., Herrasti, P., Ponce-de-Leon, C., and Sires, I., Effect of RVC porosity on the performance of PbO2 composite coatings with titanate nano-tubes for the electrochemical oxidation of azo dyes, Electrochim. Acta, 2016, vol. 204, p. 9.CrossRefGoogle Scholar
  2. 2.
    Amadelli, R., Samiolo, L., Battisti, A., and Velichenko, A.B., Electro-oxidation of some phenolic compounds by electrogenerated O3 and by direct electrolysis at PbO2 anodes, J. Electrochem. Soc., 2011, vol. 158, p. P87.CrossRefGoogle Scholar
  3. 3.
    Egan, D.R.P., Low, C.T.J., and Walsh, F.C., Electro-deposited nanostructured lead dioxide as a thin film electrode for a lightweight lead-acid battery, J. Power Sources, 2011, vol. 196, p. 5725.CrossRefGoogle Scholar
  4. 4.
    Shmychkova, O., Luk’yanenko, T., Yakubenko, A., Amadelli, R., and Velichenko, A., Electrooxidation of some phenolic compounds at Bi-doped PbO2, Appl. Catal. B-Environ, 2015, vol. 162, p. 346.CrossRefGoogle Scholar
  5. 5.
    Dai, Q.Z., Zhou, J.Z., Weng, M.L., Luo, X.B., Feng, D.L., and Chen, J.M., Electrochemical oxidation metronidazole with Co modified PbO2 electrode: degradation and mechanism, Sep. Purif. Technol., 2016, vol. 166, p. 109.CrossRefGoogle Scholar
  6. 6.
    Andrade, L.S., Ruotolo, L.A.M., Rocha-Filho, R.C., Bocchi, N., Biaggio, S.R., Iniesta, J., Garcia-Garcia, V., and Montiel, V., On the performance of Fe and Fe,F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile waste-water, Chemosphere, 2007, vol. 66, p. 2035.CrossRefGoogle Scholar
  7. 7.
    Xu, M., Wang, Z.C., Wang, F.W., Hong, P., Wang, C.Y., Ouyang, X.M., Zhu, C.G., Wei, Y.J., Hun, Y.H., and Fang, W.Y., Fabrication of cerium doped Ti/nano-TiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation, Electrochim. Acta, 2016, vol. 201, p. 240.CrossRefGoogle Scholar
  8. 8.
    Xu, H., Shao, D., Zhang, Q., Yang, H.H., and Yan, W., Preparation and characterization of PbO2 electrodes from electro-deposition solutions with different copper concentration, RSC Adv., 2014, vol. 4, p. 25011.CrossRefGoogle Scholar
  9. 9.
    Dalili, N., Clark, M.P., Davari, E., and Ivey, D.G., Microstructural characterization of the cycling behavior of electrodeposited manganese oxide supercapacitors using 3D electron tomography, J. Power Sources, 2016, vol. 328, p. 318.CrossRefGoogle Scholar
  10. 10.
    Li, Y.J., Wang, G.L., Ye, K., Cheng, K., Pan, Y., Yan, P., Yin, J.L., and Cao, D.X., Facile preparation of three-dimensional multilayer porous MnO2/reduced graphene oxide composite and its supercapacitive performance, J. Power Sources, 2014, vol. 271, p. 582.CrossRefGoogle Scholar
  11. 11.
    Li, X.H. and Pletcher, D., Electrodeposited lead dioxide coatings, Chem. Soc. Rev., 2011, vol. 40, p. 3879.CrossRefGoogle Scholar
  12. 12.
    Li, Y., Jiang, L.X., Liu, F.Y., Li, J., and Liu, Y.X., Novel phosphorus-doped PbO2–MnO2 bicontinuous electrodes for oxygen evolution reaction, RSC Adv., 2014, vol. 4, p. 24020.CrossRefGoogle Scholar
  13. 13.
    Comisso, N., Cattarin, S., Guerriero, P., Mattarozzi, L., Musiani, M., and Verlato, E., Conversion of porous Mn2+ ions, Electrochem. Commun., 2016, vol. 73, p. 59.CrossRefGoogle Scholar
  14. 14.
    Yang, H.T., Chen, B.M., Liu, H.R., Guo, Z.C., Zhang, Y.C., Li, X.L., and Xu, R.D., Effects of manganese nitrate concentration on the performance of an aluminum substrate ß-PbO2–MnO2–WC–ZrO2 composite electrode material, Int. J. Hydrogen Energy, 2014, vol. 39, p. 3087.CrossRefGoogle Scholar
  15. 15.
    Li, P., Zhao, Y.M., Ding, B.B., and Wang, L.Z., Effect of calcination temperature and molar ratio of tin and manganese on capacitance of Ti/SnO2–Sb–Mn/ß–PbO2 electrode during phenol electro-oxidation, J. Electroanal. Chem., 2015, vol. 747, p. 45.CrossRefGoogle Scholar
  16. 16.
    Dan, Y.Y., Lin, H.B., Liu, X.L., Lu, H.Y., Zhao, J.Z., Shi, Z., and Guo, Y.P., Porous quasi three-dimensional nano-Mn3O4 + PbO2 composite as supercapacitor electrode material, Electrochim. Acta, 2012, vol. 83, p. 175.CrossRefGoogle Scholar
  17. 17.
    Abyaneh, M.Y., Saez, V., Gonzalez-Garcia, J., and Mason, T.J., Electrocrystallization of lead dioxide: analysis of the early stages of nucleation and growth, Electrochim. Acta, 2010, vol. 55, p. 3572.CrossRefGoogle Scholar
  18. 18.
    Hwang, B.J., Santhanam, R., and Chang, Y.W., Mechanism of electrodeposition of PbO2 at a Pt sheet/rotating disk electrode, Electroanalysis, 2002, vol. 14, p. 5363.CrossRefGoogle Scholar
  19. 19.
    Velichenko, A.B., Girenko, D.V., and Danilov, F.I., Electrodeposition of lead dioxide at an Au electrode, Electrochim. Acta, 1995, vol. 40, p. 2803.CrossRefGoogle Scholar
  20. 20.
    Gonzalez-Garcia, J., Iniesta, J., Exposito, E., GarciaGarcia, V., Montiel, V., and Aldaz, A., Early stages of lead dioxide electrodeposition on rough titanium, Thin Solid Films, 1999, vol. 352, p. 49.CrossRefGoogle Scholar
  21. 21.
    Gonzalez-Garcia, J., Gallud, F., Iniesta, J., Montiel, V., Aldaz, A., and Lasia, A., Kinetics of electrocrystallisation of PbO2 on glassy carbon electrodes: influence of ultrasound, New J. Chem., 2001, vol. 25, p. 1195.CrossRefGoogle Scholar
  22. 22.
    Saez, V., Gonzalez-Garcia, J., Iniesta, J., Frias-Ferrer, A., and Aldaz, A., Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound frequency, Electrochem. Commun., 2004, vol. 6, p. 757.CrossRefGoogle Scholar
  23. 23.
    Velichenko, A.B., Amadelli, R., Knysh, V.A., Luk’yanenko, T.V., and Danilov, F.I., Kinetics of lead dioxide electrodeposition from nitrate solutions containing colloidal TiO2, J. Electroanal. Chem., 2009, vol. 632, p. 192.CrossRefGoogle Scholar
  24. 24.
    Lin, Z.B., Xie, B.G., Chen, J.S., Sun, J.J., and Chen, G.N., Nucleation mechanism of silver nucleation mechanism of silver during electrodeposition on a glassy carbon electrode from a cyanide-free bath with 2-hydroxypyridine as a complexing agent, J. Electroanal. Chem., 2009, vol. 633, p. 207.CrossRefGoogle Scholar
  25. 25.
    Yao, Y.W., Zhou, T., Zhao, C.M., Jing, Q.M., and Wang, Y., Influence of ZrO2 particles on fluorine-doped lead dioxide electrodeposition process from nitrate bath, Electrochim. Acta, 2013, vol. 99, p. 225.CrossRefGoogle Scholar
  26. 26.
    Scharifker, B. and Hills, G., Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 1983, vol. 28, p. 879.CrossRefGoogle Scholar
  27. 27.
    Gu, M., Initial stages of the electrocrystallization of Co-Cu alloys on GCE from the Co rich electrolytes, Electrochim. Acta, 2007, vol. 52, p. 4443.CrossRefGoogle Scholar
  28. 28.
    Hu, F. and Chan, K.C., Equivalent circuit modelling of Ni-SiC electrodeposition under ramp-up and ramp-down waveforms, Mater. Chem. Phys., 2006, vol. 99, p. 424.CrossRefGoogle Scholar
  29. 29.
    Pasquale, M.A., Gassa, L.M., and Arvia, A.J., Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives, Electrochim. Acta, 2008, vol. 53, p. 5891.CrossRefGoogle Scholar
  30. 30.
    Aaboubi, O., Douglade, J., Abenaqui, X., Boumedmed, R., and Vonhoff, J., Influence of tartaric acid on zinc electrodeposition from sulphate bath, Electrochim. Acta, 2011, vol. 56, p. 7885.CrossRefGoogle Scholar
  31. 31.
    Shmychkova, O., Lukyanenko, T., Velichenko, A., Meda, L., and Amadelli, R., Bi-doped PbO2 anodes: electrodeposition and physico-chemical properties, Electrochim. Acta, 2013, vol. 111, p. 332.CrossRefGoogle Scholar
  32. 32.
    Shmychkova, O., Lukyanenko, T., Amadelli, R., and Velichenko, A., Electrodeposition of Ce-doped PbO2. J. Electroanal. Chem., 2013, vol. 706, p. 86.CrossRefGoogle Scholar
  33. 33.
    Velichenko, A.B., Baranova, E.A., Girenko, D.V., Amadelli, R., Kovalev, S.V., and Danilov, F.I., Mechanism of electrodeposition of lead dioxide from nitrate solutions, Russ. J. Electrochem., 2003, vol. 39, p. 615.CrossRefGoogle Scholar
  34. 34.
    Velichenko, A.B. and Devilliers, D., Electrodeposition of fluorine-doped lead dioxide, J. Fluorine Chem., 2007, vol. 128, p. 269.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinChina

Personalised recommendations