Russian Journal of Electrochemistry

, Volume 55, Issue 5, pp 351–357 | Cite as

Porous LiMn2O4 Nano-Microspheres as Durable High Power Cathode Materials for Lithium Ion Batteries

  • Xiaoling Cui
  • Huixia FengEmail author
  • Jinliang Liu
  • Fengjuan Tang
  • Hongliang Li


Porous LiMn2O4 spheres was easily fabricated with MnCO3 spheres and MnO2 as precursors and characterized in terms of structure and performance as the cathode of a lithium ion battery. The presence of pores with the average size of about 50 nm throughout the whole LiMn2O4 microspheres was confirmed by scanning electron microscope (SEM) and N2 adsorption-desorption measurements. The electrochemical tests show that the synthesized product has smaller electrochemical polarization, faster Li-ion intercalation kinetics and higher electrochemical stability. It exhibits excellent rate capability and cyclic stability: delivering a reversible discharge capacity of 71 mA h g−1 at a 5 C rate and yielding a capacity retention of over 92% at a rate of 0.5 C after 100 cycles. The superior performance of the synthesized product is attributed to its special structure: porous secondary spheres particles consisting of primary single-crystalline nanoparticles. The nanoparticle reduces the path of Li-ion diffusion and increases the reaction sites for lithium insertion/extraction, the pores provide room to buffer the volume changes during charge-discharge and the single crystalline nanoparticle endows the spinel with the best stability. Taking the excellent electrochemical performance and facile synthesis into consideration, the presented porous LiMn2O4 spheres could be a competitive candidate cathode material for high-performance lithium-ion batteries.


lithium manganese oxide cathode porous spheres structure lithium-ion battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farmann, A. and Sauer, D.U., A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles, J. Power Sources, 2016, vol. 329, p. 123.CrossRefGoogle Scholar
  2. 2.
    Lin, D., Liu, Y., and Cui, Y., Reviving the lithium metal anode for high-energy batteries, Nature Nanotech., 2017, vol. 12, p. 194.CrossRefGoogle Scholar
  3. 3.
    Mao, F.X., Guo, W., and Ma, J.M., Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes, Rsc. Adv., 2015, vol. 5, p. 105248.CrossRefGoogle Scholar
  4. 4.
    Xu, G., Liu, J., Zhang, C., Cui, G., and Chen, L., Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures, J. Mater. Chem. A, 2015, vol. 3, p. 4092.CrossRefGoogle Scholar
  5. 5.
    Liu, Q.L., Wang, S.P., Tan, H.B., Yang, Z.G., Zeng, J., et al., Preparation and doping mode of doped LiMn2O4 for Li-ion batteries, Energies, 2013, vol. 6, p. 1718.CrossRefGoogle Scholar
  6. 6.
    Li, B., Wang, Y., Rong, H., Wang, Y., Liu, J., Xing, L., Xu, M., and Li, W., A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery, J. Mater. Chem. A, 2013, vol. 1, p. 12954.CrossRefGoogle Scholar
  7. 7.
    Yang, L.D., Xie, J., Cao, G.S., and Zhao, X.B., Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries, Adv. Funct. Mater., 2011, vol. 21, p. 348.CrossRefGoogle Scholar
  8. 8.
    Wang, J.G., Jin, D.D., Liu, H.Y., Zhang, C.B., Zhou, R., Shen, C., Xie, K.Y., and Wei, B.Q., All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life, Nano Energy, 2016, vol. 22, p. 524.CrossRefGoogle Scholar
  9. 9.
    Lee, S., Cho, Y., Song, H.K., Lee, K.T., and Cho, J., Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and highpower lithium-ion batteries, Angew. Chem. Int. Ed. Engl., 2012, vol. 51, p. 8748.CrossRefGoogle Scholar
  10. 10.
    Xiong, L., Xu, Y., Tao, T., and Goodenough, J.B., Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries, J. Power Sources, 2012, vol. 199, p. 214.CrossRefGoogle Scholar
  11. 11.
    Dai, K., Mao, J., Li, Z., Zhai, Y.C., Wang, Z.H., Song, X.Y., Battaglia, V., and Liu, G., Microsized single-crystal spinel LAMO for high-power lithium ion batteries synthesized via polyvinylpyrrolidone combustion method, J. Power Sources, 2014, vol. 248, p. 22.CrossRefGoogle Scholar
  12. 12.
    Jiang, Q.Q., Liu, D.D., Zhang, H., and Wang, S., Plasma-assisted sulfur doping of LiMn2O4 for highperformance lithium-ion batteries, J. Phys. Chem. C, 2015, vol. 119, p. 28776.CrossRefGoogle Scholar
  13. 13.
    Zhao, J., Qu, G., Flake, J.C., et al., Low temperature preparation of crystalline ZrO2 coatings for improved elevated-temperature performances of Li-ion battery cathodes, Chem. Commun., 2012, vol. 48, p. 8108.CrossRefGoogle Scholar
  14. 14.
    Zhang, C.C., Liu, X.Y., Su, Q.L., Wu, J.H., Huang, T., and Yu, A.S., Enhancing electrochemical performance of LiMn2O4 cathode material at elevated temperature by uniform nanosized TiO2 coating, ACS Sustain. Chem. Eng., 2017, vol. 5, p. 640.CrossRefGoogle Scholar
  15. 15.
    Patel, R.L., Park, J., and Liang, X.H., Ionic and electronic conductivities of atomic layer deposition thin film coated lithium ion battery cathode particles, Rsc. Adv., 2016, vol. 6, p. 98768.CrossRefGoogle Scholar
  16. 16.
    Yang, G.R., Wang, L., Wang, J.N., and Yan, W., Tailoring the morphology of one-dimensional hollow LiMn2O4 nanostructures by single-spinneret electro-spinning, Mater. Lett., 2016, vol. 177, p. 13.CrossRefGoogle Scholar
  17. 17.
    Hung, I.M., Yang, Y.C., Su, H.J., and Zhang, J., Influences of the surfactant on the performance of nano-LiMn2O4 cathode material for lithium-ion battery, Ceram. Int., 2015, vol. 41, p. S779.CrossRefGoogle Scholar
  18. 18.
    Jiang, H., Fu, Y., Hu, Y.J., Yan, C.Y., Zhang, L., Lee, P.S., and Li, C.Z., Hollow LiMn2O4 nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances, Small, 2014, vol. 10, p. 1096.CrossRefGoogle Scholar
  19. 19.
    Wang, F.X., Xiao, S.Y., Zhu, Y.S., Chang, Z., Hu, C.L., Wu, Y.P., and Holze, R., Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors, J. Power Sources, 2014, vol. 246, p. 19.CrossRefGoogle Scholar
  20. 20.
    Li, J., Zhang, X., Peng, R.F., Huang, Y.J., Guo, L., and Qi, Y.C., LiMn2O4/graphene composites as cathodes with enhanced electrochemical performance for lithium-ion capacitors, Rsc Adv., 2016, vol. 6, p. 54866.CrossRefGoogle Scholar
  21. 21.
    Li, S., Wei, X.G., Chang, Z.R., Chen, X.N., Yuan, X.Z., and Wang, H.J., Facile fabrication of LiMn2O4 microspheres from multi-shell MnO2 for high-performance lithium-ion batteries, Mater. Lett., 2014, vol. 135, p. 75.CrossRefGoogle Scholar
  22. 22.
    Deng, J.Q., Pan, J., Yao, Q.R., Wang, Z.M., and Zhou, H.Y., Porous core-shell LiMn2O4 microellip-soids as high-performance cathode materials for Li-ion batteries, J. Power Sources, 2015, vol. 278, p. 370.CrossRefGoogle Scholar
  23. 23.
    Guo, D.L., Chang, Z.R., Tang, H.W., Li, B., Xu, X.H., Yuan, X.Z., and Wang, H.J., Electrochemical performance of solid sphere spinel LiMn2O4 with high tap density synthesized by porous spherical Mn3O4, Electrochim. Acta, 2014, vol. 123, p. 254.CrossRefGoogle Scholar
  24. 24.
    Zhou, Y.B., Deng, Y.F., Yuan, W.H., and Chen, G.H., Synthesis of spinel LiMn2O4 microspheres with durable high rate capability, Trans. Nonferrous Met. Soc., 2012, vol. 22, p. 2541.CrossRefGoogle Scholar
  25. 25.
    Tang, H., Chang, Z., Zhao, H., Yuan, X.Z., Wang, H.J., and Gao, S.Y., Effects of precursor treatment on the structure and electrochemical properties of spinel LiMn2O4 cathode, J. Alloy. Compd., 2013, vol. 566, p. 16.CrossRefGoogle Scholar
  26. 26.
    Ragavendran, K., Chou, H.L., Lu, L., Lai, M.O., Hwang, B.J., Ravi Kumar, R., Gopukumar, S., Emmanuel, B., Vasudevan, D., and Sherwood, D., Crystal habits of LiMn2O4 and their influence on the electrochemical performance, Mater. Sci. Eng. B, 2011, vol. 176, p. 1257.CrossRefGoogle Scholar
  27. 27.
    Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., and Van, S.W., Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, vol. 4, p. 366.CrossRefGoogle Scholar
  28. 28.
    Ouyang, C., Shi, S., Wang, Z., Huang, X., and Chen, L., Experimental and theoretical studies on dynamic properties of Li ions in LixMn2O4, Solid State Commun., 2004, vol. 130, p. 501.CrossRefGoogle Scholar
  29. 29.
    Sun, W., Cao, F., Liu, Y., Zhao, X., Liu, X., and Yuan, J., Nanoporous LiMn2O4 nanosheets with exposed {111} facets as cathodes for highly reversible lithium-ion batteries, J. Mater. Chem, 2012, vol. 22, p. 20962.CrossRefGoogle Scholar
  30. 30.
    Goodenough, J.B. and Kim, Y., Challenges for rechargeable Li batteries, Chem. Mater., 2010, vol. 22, p. 587.CrossRefGoogle Scholar
  31. 31.
    Hosono, E., Kudo, T., Honma, I., Matsuda, H., and Zhou, H., Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density, Nano Lett., 2009, vol. 9, p. 1045.CrossRefGoogle Scholar
  32. 32.
    Goodenough, J.B. and Park, K.S., The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 2013, vol. 135, p. 1167.CrossRefGoogle Scholar
  33. 33.
    Ellis, B.L., Lee, K.T., and Nazar, L.F., Positive electrode materials for Li-ion and Li batteries, Chem. Mater, 2010, vol. 22, p. 691.CrossRefGoogle Scholar
  34. 34.
    Striebel, K.A., Sakai, E., and Carins, E.J., Impedance studies of the thin film LiMn2O4/electrolyte interface, J. Electrochem. Soc., 2002, vol. 149, p. A61.CrossRefGoogle Scholar
  35. 35.
    Jin, Y.C. and Duh, J.G., Kinetic study of high voltage spinel cathode material in a wide temperature range for lithium ion battery, J. Electrochem. Soc., 2017, vol. 164, p. A735.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Xiaoling Cui
    • 1
    • 2
    • 3
  • Huixia Feng
    • 1
    • 2
    • 3
    Email author
  • Jinliang Liu
    • 3
  • Fengjuan Tang
    • 3
  • Hongliang Li
    • 3
  1. 1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
  3. 3.College of Petrochemical TechnologyLanzhou University of TechnologyLanzhouChina

Personalised recommendations