Advertisement

Russian Journal of Electrochemistry

, Volume 55, Issue 5, pp 358–363 | Cite as

Experimental Study of Current Density and Liquid Phase Electric Conductivity Effects on Bubble Size Distribution in an Electroflotation Column

  • Nadia Hajlaoui
  • Issam KsentiniEmail author
  • Mariam Kotti
  • Lassaad Ben Mansour
Article
  • 3 Downloads

Abstract

Electroflotation column is preferred in many chemicals, electrochemical and biochemical wastewater process treatment due to their simplicity in design, operation and maintenance. Indeed, it is very important to have a tool to determine and optimize the size distribution of the bubbles produced inside columns. In this context and in order to improve the performance of wastewater treatment by electroflotation process, the main objective of this study was to investigate the effect of current density and liquid phase electric conductivity on the bubble size distribution and on the bubble flow regime. For this a rectangular electroflotation column was used. The method of recording and the video image analyzing was used to determine the diameter and the rise velocity of the bubbles.

Keywords

electroflotation electric conductivity image analysis bubbles wastewater current density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ghernaout, D., Naceur, M.W., and Aouabed, A., On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment, Desalination, 2011, vol. 270, p. 9.CrossRefGoogle Scholar
  2. 2.
    Ma, L., Sun, C., Ren, J., Wei, H., and Liu, P., Efficient electrochemical incineration of phenol on activated carbon fiber as a new type of particulates, Russ. J. Electrochem., 2014, vol. 50, p. 569.CrossRefGoogle Scholar
  3. 3.
    Ben Mansour, L., Ben Abdou, Y., and Gabsi, S., Effect of some parameters on removal process of nickel by electroflotation, Water Environ. Res. J., 2001, vol. 2, p. 51.Google Scholar
  4. 4.
    Merzouk, B., Yakoubi, M., Zongo, I., Leclerce, J.-P., Paternottee, G., Pontviannee, S., and Lapicquee, F., Effect of modification of textile wastewater composition on electrocoagulation efficiency, Desalination, 2011, vol. 275, p. 181.CrossRefGoogle Scholar
  5. 5.
    Anissa, A., Ridha, L., and Amor, H., Feasibility evaluation of combined electrocoagulation/adsorption process by optimizing operating parameters removal for textile wastewater treatment, Desal. Water Treat., 2017, vol. 60, p. 78.CrossRefGoogle Scholar
  6. 6.
    Ben Mansour, L. and Chalbi, S., Removal of oil from oil/water emulsions using electroflotation process, J. Appl. Electrochem., 2006, vol. 36, p. 577.CrossRefGoogle Scholar
  7. 7.
    Bukhari, A.A., Investigation of the electro-coagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater, Bioresour. Technol., 2008, vol. 99, p. 914.CrossRefGoogle Scholar
  8. 8.
    Merzouk, B., Yakoubi, M., Zongo, I., Leclerc, J.-P., Paternotte, G., Pontvianne, S., and Lapicque, F., Bubble size measurement in electroflotation, Miner. Eng., 2010, vol. 23, p. 1058.CrossRefGoogle Scholar
  9. 9.
    Ren, L., Zhang, Y., Qin, M., Bao, S., Wang, P., and Yang, C., Investigation of condition-induced bubble size and distribution in electroflotation using a highspeed camera, Int. J. Min. Sci. Technol., 2014, vol. 24, p. 7.CrossRefGoogle Scholar
  10. 10.
    Zhu, C., Hu, C., Lu, J., Wang, X., Li, H., and Chen, T., Electrocatalytic degradation of bisphenol a in aqueous solution using ß-PbO2/Ti as anode, Russ. J. Electrochem., 2015, vol. 51, p. 353.CrossRefGoogle Scholar
  11. 11.
    Zabel, T., Advantages of dissolved air flotation for water treatment, J. Am. Water Works Assoc., 1985, vol. 77, p. 42.CrossRefGoogle Scholar
  12. 12.
    Jia, B.J., Zhou, J.T., Zhang, A.L., et al., Novel electrochemical heterogeneous catalytic reactor for organic pollutant abatement, Russ. J. Electrochem., 2007, vol. 43, p. 296.CrossRefGoogle Scholar
  13. 13.
    Kolesnikov, V.A., Varaksin S.O., and Kryuchkova, L.A., Electroflotation extraction of valuable components from wash waters of electroplating works, with water recycling, Russ. J. Electrochem., 2001, vol. 37, p. 760.CrossRefGoogle Scholar
  14. 14.
    Kyzas George, Z. and Matis Kostas, A., Electroflotation process: A review, J. Molec. Liquids, 2016, vol. 220, p. 657.CrossRefGoogle Scholar
  15. 15.
    Samantha, G.C., Dutra Achilles, J.B., and Monte Marisa, B.M., The influence of some parameters on bubble average diameter in an electroflotation cell by laser diffraction method, J. Environ. Chem. Eng., 2016, vol. 4, p. 3681.CrossRefGoogle Scholar
  16. 16.
    Ksentini, I., Kotti, M., and Ben Mansour, L., Effect of liquid phase physicochemical characteristics on hydrodynamics of an electroflotation column, Desalin. Water Treat., 2013, vol. 51, p. 1.CrossRefGoogle Scholar
  17. 17.
    Lin, B., Recke, B., Knudsen, J.K.H., and Jorgensen, S.B., Bubble size estimation for flotation processes, Mineral Eng., 2008, vol. 21, p. 539.CrossRefGoogle Scholar
  18. 18.
    Labbafi, M., Thakur, R.K., Vial, C., and Djelveh, G., Development of an on-line optical method for assment of the bubble size and morphology in aerated food products, Food Chem., 2007, vol. 102, p. 454.CrossRefGoogle Scholar
  19. 19.
    Ding, Y.G., Lu, X., and Deng, F.L., Numerical simulation with a CFD-PBM model of hydrodynamics and bubble size distribution of a rectangle bubble column, Am. Soc. Mech. Eng., 2016, vol. 5, p. 30.Google Scholar
  20. 20.
    Schafer, R., Merten, C., and Eigenberger, G., Bubble size distributions in a bubble column reactor under industrial conditions, Exp. Therm. Fluid Sci., 2002, vol. 26, p. 595.CrossRefGoogle Scholar
  21. 21.
    Kendoush, A.A., Mohammed, T.J., and Abid, B.A., Experimental investigation of the hydrodynamic interaction in bubbly tow phase flow, J. Chem. Eng. Processing, 2004, vol. 43, p. 23.CrossRefGoogle Scholar
  22. 22.
    Malysa, K., Krasowska, M., and Krzan, M., Influence of surface active substances on bubble motion and collision with various interfaces, Adv. Colloid Interface Sci., 2005, vol. 114, p. 205.CrossRefGoogle Scholar
  23. 23.
    Prakash, A., Margaritis, A., and Li, H., Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast, Biochem. Eng. J., 2001, vol. 9, p. 155.CrossRefGoogle Scholar
  24. 24.
    Sentini, K., Hmidi, N., Hajlaoui, N., and Ben Mansour, L., Hydrodynamic study of an electroflotation column operating in continuous mode, I.J.I.R.T., 2014, vol.1, p. 109.Google Scholar
  25. 25.
    Painmanakul, P., Loubièrea, K., Hébrarda, G., Peuchot, M.M., and Roustan, M., Effect of surfactants on liquid-side mass transfer coefficients, Chem. Eng. Sci., 2005, vol. 60, p. 6480.CrossRefGoogle Scholar
  26. 26.
    Issaoui, R., Ksentini, I., Kotti, M., and Ben Mansour, L., Effect of current density and oil concentration on hydrodynamic aspects in electroflotation column during oil/water emulsion treatment, Water Treat. Demineral. Technol., 2017, vol. 39, p. 166.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Nadia Hajlaoui
    • 1
  • Issam Ksentini
    • 2
    Email author
  • Mariam Kotti
    • 1
  • Lassaad Ben Mansour
    • 1
  1. 1.Sciences Faculty of SfaxLaboratory of Applied Fluid Mechanics-Process Engineering and EnvironmentSfaxTunisia
  2. 2.International Institute of TechnologyNorth American Private UniversitySfaxTunisia

Personalised recommendations