Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 867–872 | Cite as

The Kolmogorov–Sinai Entropy in the Setting of Fuzzy Sets for Atmospheric Corrosion Image Texture Analysis

  • Yang Song
  • Bing Zhou
  • Yingying Zhang
  • Xinhui Nie
  • Chao Ma
  • Zhiming GaoEmail author
  • Da-Hai Xia
Article

Abstract

Image analysis gives us a new opportunity in corrosion science. Fuzzy Kolmogorov–Sinai (K–S) entropy is used to quantify the average amount of uncertainty of a dynamical system through a sequence of observations. The fuzzy K–S entropy for horizontal and vertical orientations is sensitive to distribution of corrosion product or corrosion degree, and the entropy values decrease as the corrosion becomes more and more serious. It is concluded that the fuzzy K–S entropy is illustrated as an effective feature for image analysis and corrosion classification.

Keywords

atmospheric corrosion fuzzy Kolmogorov–Sinai entropy weight loss image analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schindelholz, E., Risteen, B.E., and Kelly, R.G., Effect of relative humidity on corrosion of steel under sea salt aerosol proxies: I. NaCl, J. Electrochem. Soc., 2014, vol. 161, pp. C450–C459.Google Scholar
  2. 2.
    Schindelholz, E., Risteen, B.E., and Kelly, R.G., Effect of relative humidity on corrosion of steel under sea salt aerosol proxies: II. MgCl2, artificial seawater, J. Electrochem. Soc., 2014, vol. 161, pp. C460–C470.Google Scholar
  3. 3.
    Esmaily, M., Shahabi-Navid, M., Svensson, J.E., Halvarsson, M., Nyborg, L., Cao, Y., and Johansson, L.G., Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50, Corros. Sci., 2015, vol. 90, pp. 420–433.CrossRefGoogle Scholar
  4. 4.
    Leygraf, C., Wallinder, I.O., Tidblad, J., and Graedel, T., Atmospheric Corrosion, 2nd ed., 2016.CrossRefGoogle Scholar
  5. 5.
    Thee, C., Hao, L., Dong, J., Mu, X., Wei, X., Li, X., and Ke, W., Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet–dry condition, Corros. Sci., 2014, vol. 78, pp. 130–137.CrossRefGoogle Scholar
  6. 6.
    Xia, D.H., Song, S.Z., and Behnamian, Y., Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms, Corros. Eng., Sci. Technol., 2016, vol. 51, pp. 527–544.CrossRefGoogle Scholar
  7. 7.
    Shi, Y., Tada, E., and Nishikata, A., A method for determining the corrosion rate of a metal under a thin electrolyte film, J. Electrochem. Soc., 2015, vol. 162, pp. C135–C139.Google Scholar
  8. 8.
    Zhiming, G., Zeqing, W., Yinghao, S., Sibo, W., Chao, M., Yu, Z., and Xia, D.-H., Passivity degradation of nuclear materials in reduced sulfur environments: A review, Trans. Tianjin Univ., 2016, vol. 22, pp. 189–201.CrossRefGoogle Scholar
  9. 9.
    Tan, H., Jiang, Y., Deng, B., Gao, W., and Li, J., Evaluation of aged Incoloy 800 alloy sensitization to intergranular corrosion by means of double loop electrochemical methods and image analysis, Nucl. Eng. Design, 2011, vol. 241, pp. 1421–1429.CrossRefGoogle Scholar
  10. 10.
    Pidaparti, R.M., Aghazadeh, B.S., Whitfield, A., Rao, A.S., and Mercier, G.P., Classification of corrosion defects in NiAl bronze through image analysis, Corros. Sci., 2010, vol. 52, pp. 3661–3666.CrossRefGoogle Scholar
  11. 11.
    Quin, M.J., Bailey, M.G., Ikeda, B.M., and Shoesmith, D.W., Image-analysis techniques for investigating localized corrosion processes, Report Atomic Energy of Canada Limited (AECL), 1993, pp. 1–51.Google Scholar
  12. 12.
    Codaro, E.N., Nakazato, R.Z., Horovistiz, A.L., Ribeiro, L.M.F., Ribeiro, R.B., and Hein, L.R.O., An image processing method for morphology characterization and pitting corrosion evaluation, Mater. Sci. Eng., A, 2002, vol. 334, pp. 298–306.CrossRefGoogle Scholar
  13. 13.
    Garcia Ochoa, E. and Corvo, F., Copper patina corrosion evaluation by means of fractal geometry using electrochemical noise (EN) and image analysis, Electrochem. Commun., 2010, vol. 12, pp. 826–830.CrossRefGoogle Scholar
  14. 14.
    Itzhak, D., Dinstein, I., and Zilberberg, T., Pitting corrosion evaluation by computer image processing, Corros. Sci., 1981, vol. 21, pp. 17–22.CrossRefGoogle Scholar
  15. 15.
    Pham, T.D., The Kolmogorov–Sinai entropy in the setting of fuzzy sets for image texture analysis and classification, Pattern Recognit., 2016, vol. 53, pp. 229–237.CrossRefGoogle Scholar
  16. 16.
    Shi, J., Xia, D., Wang, J., Zhou, C., and Liu, Y., Degradation process of coated tinplate by phase space reconstruction theory, Trans. Tianjin Univ., 2013, vol. 19, pp. 92–97.CrossRefGoogle Scholar
  17. 17.
    Xia, D.H., Song, S.Z., Wang, J.H., Shi, J.B., Bi, H.C., and Gao, Z.M., Determination of corrosion types from electrochemical noise by phase space reconstruction theory, Electrochem. Commun., 2012, vol. 15, pp. 88–92.CrossRefGoogle Scholar
  18. 18.
    Xia, D.H., Shi, J.B., Gong, W.Q., Zhou, R.J., Gao, Z.M., and Wang, J.H., The significance of correlation dimension obtained from electrochemical noise, Electrochemistry, 2012, vol. 80, pp. 907–912.CrossRefGoogle Scholar
  19. 19.
    Pham, T.D., Classification of complex biological aging images using fuzzy Kolmogorov–Sinai entropy, J. Phys. D: Appl. Phys., 2014, vol. 47, p. 485402.CrossRefGoogle Scholar
  20. 20.
    Atmanspacher, H. and Scheingraber, H., A fundamental link between system theory and statistical mechanics, Found. Phys., 1987, vol. 17, pp. 939–963.CrossRefGoogle Scholar
  21. 21.
    Pham, T.D., Geostatistical entropy for texture analysis: An indicator kriging approach, Int. J. Intell. Syst., 2014, vol. 29, pp. 253–265.CrossRefGoogle Scholar
  22. 22.
    de la Fuente, D., Diaz, I., Simancas, J., Chico, B., and Morcillo, M., Long-term atmospheric corrosion of mild steel, Corros. Sci., 2011, vol. 53, pp. 604–617.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yang Song
    • 1
  • Bing Zhou
    • 2
  • Yingying Zhang
    • 2
  • Xinhui Nie
    • 3
  • Chao Ma
    • 1
  • Zhiming Gao
    • 1
    Email author
  • Da-Hai Xia
    • 1
  1. 1.Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and EngineeringTianjin UniversityTianjinChina
  2. 2.CNPC research institute of engineering technologyTianjinChina
  3. 3.Guodian Science and Technology Research InstituteChina GuodianNanjingChina

Personalised recommendations