Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 851–859 | Cite as

Simultaneous Determination of Epinephrine and Folic Acid Using the Fe3O4@SiO2/GR Nanocomposite Modified Graphite

  • Mohadeseh SafaeiEmail author
  • Hadi Beitollahi
  • Masoud Reza Shishehbore
Article
  • 1 Downloads

Abstract

A sensitive and convenient electrochemical sensor was developed for determination of epinephrine by using the Fe3O4@SiO2/GR nanocomposite modified graphite screen printed electrode, and its electrochemical behaviour was investigated by cyclic voltammetry, chronoamperometry and differential pulse voltammograms. Differential pulse voltammetry results exhibited the linear dynamic range of 5.0–1000.0 μM, with detection limits (S/N = 3) of 1.0 μM. The prepared electrode was successfully applied for simultaneous determination of epinephrine and folic acid in real samples.

Keywords

epinephrine folic acid Fe3O4@SiO2/GR nanocomposite graphite screen printed electrodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beitollahi, H. and Nekooei, S., Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine, Electroanalysis, 2016, vol. 28, p. 645.CrossRefGoogle Scholar
  2. 2.
    Dong, J., Liu, S., Fu, Y., and Wang, Q., Investigation of strain-induced modulation on electronic properties of graphene field effect transistor, Phys. Lett., 2017, vol. 381, p. 292.CrossRefGoogle Scholar
  3. 3.
    Yazici, E., Yanik, S., and Yilmaz, M.B., Graphene oxide nano-domain formation via wet chemical oxidation of grapheme, Carbon, 2017, vol. 111, p. 822.CrossRefGoogle Scholar
  4. 4.
    Beitollahi, H., Ebadinejad, F., Shojaie, F., and Torkzadeh- Mahani, M., A magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide, Anal. Methods, 2016, vol. 8, p. 6185.CrossRefGoogle Scholar
  5. 5.
    Dong, L., Chen, W., Zheng, C, and Deng, N., Microstructure and properties characterization of tungsten–copper composite materials doped with grapheme, J. Alloys Compd., 2017, vol. 695, p. 1637.CrossRefGoogle Scholar
  6. 6.
    Carbone, M., Gorton, L., and Antiochia, R., An overview of the latest graphene-based sensors for glucose detection: the effects of graphene defects, Electroanalysis, 2015, vol. 27, p. 16.CrossRefGoogle Scholar
  7. 7.
    Beitollahi, H., Tajik, S., and Jahani, Sh., Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite, Electroanalysis, 2016, vol. 28, p. 1093.CrossRefGoogle Scholar
  8. 8.
    Qiu, H.J., Guan, Y., Luo, P., and Wang, Y., Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells, Biosens. Bioelectron., 2017, vol. 89, p. 85.CrossRefGoogle Scholar
  9. 9.
    Bai, Y., Liu, M., Sun, J., and Gao, L., Fabrication of Ni–Co binary oxide/reduced graphene oxide composite with high capacitance and cyclicity as efficient electrode for supercapacitors, Ionics, 2016, vol. 22, p. 535.CrossRefGoogle Scholar
  10. 10.
    Beitollahi, H., Ghofrani Ivari, S., and Torkzadeh-Mahani, M., Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO–CuO nanoplates and modifier, Mater. Sci. Eng., C, 2016, vol. 69, p. 128.Google Scholar
  11. 11.
    Fu, C., Li, M., Li, H., Li, C., Qu, C., and Yang, B., Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application, Mater. Sci. Eng., C, 2017, vol. 72, p. 425.CrossRefGoogle Scholar
  12. 12.
    Song, X., Shi, Q., Wang, H., Liu, S., Tai, C., and Bian, Z., Preparation of Pd–Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation–reduction properties for chlorophenols, Appl. Catal., B, 2017, vol. 203, p. 442.CrossRefGoogle Scholar
  13. 13.
    Beitollahi, H. and Garkani Nejad, F., Graphene oxide/ZnO nanocomposite for sensitive and selective electrochemical sensing of Levodopa and Tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.CrossRefGoogle Scholar
  14. 14.
    Osikoya, A.O., Parlak, O., Murugan, N.A., Dikio, E.D., Moloto, H., Uzun, L., Turner, A.P.F., and Tiwari, A., Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing, Biosens. Bioelectron., 2017, vol. 89, p. 496.CrossRefGoogle Scholar
  15. 15.
    Beitollahi, H. and Salimi, H., A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene, J. Electrochem. Soc., 2016, vol. 163, p. H1157.Google Scholar
  16. 16.
    Wang, Z.H., Xia, J.F., Zhu, L.Y., Zhang, F.F., Guo, X.M., Li, Y.H., and Xia, Y.Z., The fabrication of poly(acridine orange)/graphene modified electrode with electrolysis micelle disruption method for selective determination of uric acid, Sens. Actuators, B, 2012, vol. 161, p. 131.CrossRefGoogle Scholar
  17. 17.
    Zhang, J.X., Gray, D.H., Lalonde, H., and Carr, N., Digital necrosis after lidocaine and epinephrine injection in the flexor tendon sheath without phentolamine rescue, J. Hand. Surg. Am., 2016, vol. 42, p. 119.CrossRefGoogle Scholar
  18. 18.
    Deakin, C.D., Yang, J., Nguyen, R., Zhu, J., Brett, S.J., Nolan, J.P., Perkins, G.D., Pogson, D.G., and Parnia, S., Effects of epinephrine on cerebral oxygenation during cardiopulmonary resuscitation: A prospective cohort study, Resuscitation, 2016, vol. 109, p. 138.CrossRefGoogle Scholar
  19. 19.
    Devadas, B., Rajkumar, M., and Chen, S.M., Electropolymerization of curcumin on glassy carbon electrode and its electrocatalytic application for the voltammetric determination of epinephrine and p-acetoaminophenol, Colloids Surf., B, 2014, vol. 116, p. 674.CrossRefGoogle Scholar
  20. 20.
    Thomas, T., Mascarenhas, R.J., D’Souza, O.J., Detriche, S., Meldialif, Z., and Martis, P., Pristine multiwalled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine, Talanta, 2014, vol. 125, p. 352.CrossRefGoogle Scholar
  21. 21.
    Beitollahi, H., Mazloum Ardakani, M., Ganjipour, B., and Naeimi, H., Novel 2,2'-[1,2-ethanediyl-bis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid, Biosens. Bioelectron., 2008, vol. 24, p. 362.Google Scholar
  22. 22.
    Jang, C.H., Clio, Y.B., Lee, J.S., Kim, G.H., Jung, W.K., and Pak, S.C., The effect of propofol infusion with topical epinephrine on cochlear blood flow and hearing: An experimental study, Int. J. Pediatr. Otorhinolaryngol., 2016, vol. 91, p. 23.CrossRefGoogle Scholar
  23. 23.
    Pradhan, P., Mascarenhas, R.J., Thomas, T., Namboothiri, I.N., D’Souza, O.J., and Meldialif, Z., Electropolymerization of bromothymol blue on carbon paste electrode bulk modified with oxidized multiwall carbon nanotubes and its application in amperometric sensing of epinephrine in pharmaceutical and biological samples, J. Electroanal. Chem., 2014, vol. 732, p. 30.CrossRefGoogle Scholar
  24. 24.
    Hassan, S.Y., Clinical features and outcome of epinephrine-induced Takotsubo syndrome: Analysis of 33 published cases, Cardiovasc. Revasc., Med., 2016, vol. 17, p. 450.CrossRefGoogle Scholar
  25. 25.
    Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., and Soltani, H., Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid, Electroanalysis, 2015, vol. 27, p. 2620.Google Scholar
  26. 26.
    Taei, M., Hasanpour, F., Tavakkoli, N., and Bahrameian, M., Electrochemical characterization of poly(fuchsine acid) modified glassy carbon electrode and its application for simultaneous determination of ascorbic acid, epinephrine and uric acid, J. Mol. Liq., 2015, vol. 211, p. 353.CrossRefGoogle Scholar
  27. 27.
    Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G., and Sekar, C., Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode, Sens. Actuators, B, 2015, vol. 221, p. 1412.CrossRefGoogle Scholar
  28. 28.
    Mohammadi, S., Beitollahi, H., and Mohadesi, A., Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid, Sens. Lett., 2013, vol. 11, p. 388.CrossRefGoogle Scholar
  29. 29.
    Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G., and Sekar, C., Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn–SnO2 nanoparticles modified glassy carbon electrode, J. Electroanal. Chem., 2016, vol. 770, p. 23.CrossRefGoogle Scholar
  30. 30.
    Santos, C., Gomes, P., Duarte, J.A., Almeida, M.M., Costa, M.E.V., and Fernandes, M.H., Development of hydroxyapatite nanoparticles loaded with folic acid to induce osteoblastic differentiation, Int. J. Pharm., 2017, vol. 516, p. 185.CrossRefGoogle Scholar
  31. 31.
    Kingsley, M.P., Desai, P.B., and Srivastava, A.K., Simultaneous electro-catalytic oxidative determination of ascorbic acid and folic acid using Fe3O4 nanoparticles modified carbon paste electrode, J. Electroanal. Chem., 2015, vol. 741, p. 71.CrossRefGoogle Scholar
  32. 32.
    Li, X., Tan, X., Yan, J., Hu, Q., Wu, J., Zhang, H., and Chen, X., A sensitive electrochemiluminescence folic acid sensor based on a 3D graphene/CdSeTe/Ru-doped silica nanocomposite modified electrode, Electrochim. Acta, 2016, vol. 187, p. 433.CrossRefGoogle Scholar
  33. 33.
    Wang, X., You, Z., Cheng, Y., Sha, H., Li, G., Zhu, H., and Sun, W., Application of nanosized gold and graphene modified carbon ionic liquid electrode for the 2+ (bpy)3 sensitive electrochemical determination of folic acid, J. Mol. Liq., 2015, vol. 204, p. 112.CrossRefGoogle Scholar
  34. 34.
    Teresa McGee, E.J., Sangakkara, A.R., and Diosady, L.L., Double fortification of salt with folic acid and iodine, J. Food Eng., 2017, vol. 198, p. 72.Google Scholar
  35. 35.
    Rastakhiz, N., Beitollahi, H., Kariminik, A., and Karimi, F., Voltammetric determination of carbidopa in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode, J. Mol. Liq., 2012, vol. 172, p. 66.CrossRefGoogle Scholar
  36. 36.
    Ananthi, A., Kumar, S.S., and Phani, K.L., Facile onestep direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid, Electrochim. Acta, 2015, vol. 151, p. 584.CrossRefGoogle Scholar
  37. 37.
    Ji, C., Walton, J., Sub, Y., and Tella, M., Simultaneous determination of plasma epinephrine and norepinephrine using an integrated strategy of a fully automated protein precipitation technique, reductive ethylation labeling and UPLC–MS/MS, Anal. Chim. Acta, 2010, vol. 670, p. 84.CrossRefGoogle Scholar
  38. 38.
    Zhu, K.Y., Fu, Q., Leung, K.W., Wong, Z.C.F., Choi, R.C.Y., and Tsim, K.W.K., The establishment of a sensitive method in determining different neurotransmitters simultaneously in rat brains by using liquid chromatography–electrospray tandem mass spectrometry, J. Chromatogr. B, 2011, vol. 879, p. 737.CrossRefGoogle Scholar
  39. 39.
    Chan, E.C.Y. and Ho, P.C., High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometric method for the analysis of catecholamines and metanephrines in human urine, Mass Spectrom., 2000, vol. 14, p. 1959.Google Scholar
  40. 40.
    Michalowski, J. and Halaburda, P., Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source, Talanta, 2001, vol. 55, p. 1165.CrossRefGoogle Scholar
  41. 41.
    Lin, C.E., Fang, I.J., Deng, Y., Jr., Liao, W.S., Cheng, H.T., and Huang, W.P., Capillary electrophoretic studies on the migration behavior of cationic solutes and the influence of interactions of cationic solutes with sodium dodecyl sulfate on the formation of micelles and critical micelle concentration, J. Chromatogr. A, 2004, vol. 1051, p. 85.Google Scholar
  42. 42.
    Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.CrossRefGoogle Scholar
  43. 43.
    Jain, A.K., Gupta, V.K., Radi, S., Singh, L.P., and Raisoni, J.R., A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors, Electrochim. Acta, 2006, vol. 51, p. 2547.CrossRefGoogle Scholar
  44. 44.
    Gupta, V.K., Jain, A.K., Maheshwari, G., and Lang, H., Copper(II)-selective potentiometric sensor based on porphyrins in PVC matrix, Sens. Actuators, B, 2006, vol. 117, p. 99.CrossRefGoogle Scholar
  45. 45.
    Jain, A.K., Gupta, V.K., Singh L.P., and Khurana, U., Macrocycle based membrane sensors for the determination of cobalt(II) ions, Analyst, 1997, vol. 122, p. 583.CrossRefGoogle Scholar
  46. 46.
    Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sens. Actuators, B, 2014, vol. 195, p. 98.CrossRefGoogle Scholar
  47. 47.
    Movlaee, K., Ganjali, M.R., Aghazadeh, M., Beitollahi, H., Hosseini, M., Shahabi, S., and Norouzi, P., Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid, Int. J. Electrochem. Sci., 2017, vol. 12, p. 305.CrossRefGoogle Scholar
  48. 48.
    Gupta, V.K., Prasad, R., Mangla, R., and Kumar, P., New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix, Anal. Chim. Acta, 2000, vol. 420, p. 19.CrossRefGoogle Scholar
  49. 49.
    Prasad, R., Gupta, V.K., and Kumar, A., Metallotetraazaporphyrin based anion sensors: Regulation of sensor characteristics through central metal ion coordination, Anal. Chim. Acta, 2004, vol. 508, p. 61.CrossRefGoogle Scholar
  50. 50.
    Gupta, V.K., Agarwal, S., and Singhal, B., A review on the recent advances on potentimetric membrane sensors for pharmaceutical analysis, Comb. Chem. High Throughput Screening, 2011, vol. 14, p. 284.CrossRefGoogle Scholar
  51. 51.
    Jain, R., Gupta, V.K., Jadon, N., and Radhapyari, K., Voltammetric determination of cefixime in pharmaceuticals and biological fluids, Anal. Biochem., 2010, vol. 407, p. 79.CrossRefGoogle Scholar
  52. 52.
    Gupta, V.K., Jain, A.K., and Maheshwari, G., Novel aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix, Talanta, 2007, vol. 72, p. 1469.CrossRefGoogle Scholar
  53. 53.
    Sadikoglu, M., Yilmaz, S., Kurt, I., Selvi, B., Sari, H., Erduran, N., Usta, E., and Saglikoglu, G., Electrocatalytic oxidation of hydrazine on poly(4-aminobenzene sulfonic acid)-modified glassy carbon electrode, Russ. J. Electrochem., 2016, vol. 52, p. 539.CrossRefGoogle Scholar
  54. 54.
    Gupta, V.K., Jain, A.K., Agarwal, S., and Maheshwari, G., An iron(III) ion selective sensor based on a μ bis (tridentate) ligand, Talanta, 2007, vol. 71, p. 1964.CrossRefGoogle Scholar
  55. 55.
    Goyal, R.N., Gupta, V.K., and Chatterjee, S., Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode, Sens. Actuators, B, 2010, vol. 149, p. 252.CrossRefGoogle Scholar
  56. 56.
    Gupta, V.K., Karimi-Maleh, H., and Roya Sadegh, R., Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor, Int. J. Electrochem. Sci., 2015, vol. 10, p. 303.Google Scholar
  57. 57.
    Srivastava, S.K., Gupta, V.K., and Jain, S., Determination of lead using poly(vinyl chloride) based crown ether membrane, Analyst, 1995, vol. 120, p. 495.CrossRefGoogle Scholar
  58. 58.
    Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., and Bharti, A., Mercury selective potentiometric sensor based on low rim functionalized thiacalix[4]arene as a cationic receptor, J. Mol. Liq., 2013, vol. 177, p. 114.CrossRefGoogle Scholar
  59. 59.
    Motaghi, M.M., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: Application to real sample analysis, Int. J. Electrochem. Sci., 2016, vol. 11, p. 7849.CrossRefGoogle Scholar
  60. 60.
    Gupta, V.K., Goyal, R.N., and Sharma, R.A., Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone based receptors: Poly(vinyl chloride) based sensor for acetate, Talanta, 2008, vol. 76, p. 859.CrossRefGoogle Scholar
  61. 61.
    Jain, A.K., Gupta, V.K., Sahoo B.B., and Singh, L.P., Copper(II)-selective electrodes based on macrocyclic compounds, Anal. Proc. incl. Anal. Commun., 1995, vol. 32, p. 99.CrossRefGoogle Scholar
  62. 62.
    Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., Selective naked-eye detection of magnesium(II) ions using a coumarin-derived fluorescent probe, Sens. Actuators, B, 2015, vol. 207, p. 216.CrossRefGoogle Scholar
  63. 63.
    Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., and Vafaei, Z., Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II), J. Hazard. Mater., 2010, vol. 183, p. 402.CrossRefGoogle Scholar
  64. 64.
    Gupta, V.K., Jain, A.K., and Kumar, P., PVC-based membranes of N,N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor, Sens. actuators, B, 2006, vol. 120, p. 259.CrossRefGoogle Scholar
  65. 65.
    Kurmaz, V.A. and Gul’tyai, V.P., Electrode reactions and electroanalysis of organomercury compounds, Russ. Chem. Rev., 2010, vol. 79, p. 307.CrossRefGoogle Scholar
  66. 66.
    Gupta, V.K., Kumar, S., Singh, R., Singh, L.P., Shoora, S.K., and Sethi, B., J. Mol. Liq., 2014, vol. 195, p. 65.CrossRefGoogle Scholar
  67. 67.
    Karthikeyan, S., Gupta, V.K., Boopathy, R., Titus, A., and Sekaran, G., A new approach for the degradation of high concentration of aromatic amine by heterocatalytic fenton oxidation: Kinetic and spectroscopic studies, J. Mol. Liq., 2012, vol. 173, p. 153.CrossRefGoogle Scholar
  68. 68.
    Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sens. Actuators, B, 2014, vol. 195, p. 98.CrossRefGoogle Scholar
  69. 69.
    Srivastava, S.K., Gupta, V.K., and Jain, S., PVC-based 2,2,2-cryptand sensors for zinc ions, Anal. Chem., 1996, vol. 68, p. 1272.CrossRefGoogle Scholar
  70. 70.
    Gupta, V.K., Singh, A.K., Mehtab, S., and Gupta, B.A., A cobalt(II) selective PVC membrane based on a Schiff base complex of N,N-bis (salicylidene)-3,4-diaminotoluene, Anal. Chim. Acta, 2006, vol. 566, p. 5.CrossRefGoogle Scholar
  71. 71.
    Jahani, Sh. and Beitollahi, H., Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrodes, Electroanalysis, 2016, vol. 28, p. 2022.CrossRefGoogle Scholar
  72. 72.
    Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions, Talanta, 2015, vol. 144, p. 80.CrossRefGoogle Scholar
  73. 73.
    Jain, A.K., Gupta, V.K., Khurana U., and Singh, L.P., A new membrane Sensor for UO2+, based on 2-Hydroxyacetophenoneoxime-thioureatrioxane resin, Electroanalysis, 1997, vol. 9, p. 857.CrossRefGoogle Scholar
  74. 74.
    Gupta, V.K., Pathania, D., Agarwal, S., and Sharma, S., Decolorization of hazardous dye from water system using chemical modified Ficus carica adsorbent, J. Mol. Liq., 2012, vol. 174, p. 86.CrossRefGoogle Scholar
  75. 75.
    Peng, D., Hu, B., Kang, M., Wang, M., He, L., Zhang, Z., and Fang, S., Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II), Appl. Surf. Sci., 2016, vol. 390, p. 422.CrossRefGoogle Scholar
  76. 76.
    Gupta, V.K., Jain, A.K., Agarwal, P.K.S., and Maheshwari, G., Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix, Sens. Actuators, B, 2006, vol. 113, p. 182.CrossRefGoogle Scholar
  77. 77.
    Goyal, R.N., Gupta, V.K., and Bachheti, N., Fullerene-C60-modified electrode as a sensitive voltammet ric sensor for detection of nandrolone, Anal. Chim. Acta, 2007, vol. 597, p. 82.CrossRefGoogle Scholar
  78. 78.
    Gupta, V.K., Gupta, V.K., Al Khayat, M., and Gupta, B., Neutral carriers based polymeric membrane electrodes for selective determinati on of mercury(II), Anal. Chim. Acta, 2007, vol. 590, p. 81.Google Scholar
  79. 79.
    Esfandiari Baghbamidi, S., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Voltammetric sensor based on 1-Benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; Detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10874.Google Scholar
  80. 80.
    Gupta, V.K., Ganjali, M.R., Norouzi, P., Khani, H., Nayak, A., and Agarwal, S., Electrochemical analysis of some toxic metals and drugs by ion selective electrodes, Crit. Rev. Anal. Chem., 2011, vol. 41, p. 282.CrossRefGoogle Scholar
  81. 81.
    Gupta, V.K., Mittal, A., Malviya, A., and Mittal, J., Adsorption of carmoisine A from wastewater using waste materials—Bottom ash and de-oiled soya, J. Colloid Interface Sci., 2009, vol. 355, p. 24.CrossRefGoogle Scholar
  82. 82.
    Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.CrossRefGoogle Scholar
  83. 83.
    Mohamed, M.E., Modified carbon paste electrode for potentiometric determination of aluminium ion in spiked real water sample, Russ. J. Electrochem., 2016, vol. 52, p. 754.CrossRefGoogle Scholar
  84. 84.
    Gupta, V.K., Jain S., and Chandra, S., Chemical sensor for lanthanum(III) determination using Aza Crown as Ionophore in poly(vinyl chloride) matrix, Anal. Chim. Acta, 2003, vol. 486, p. 199.CrossRefGoogle Scholar
  85. 85.
    Gupta, V.K., Chandra, S., and Mangla, R., Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor, Electrochim. Acta, 2002, vol. 47, p. 1579.CrossRefGoogle Scholar
  86. 86.
    Gupta, V.K., Mangla, R., Khurana U., and Kumar, P., Determination of uranyl Ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor, Electroanalysis, 1999, vol. 11, p. 573.CrossRefGoogle Scholar
  87. 87.
    Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.CrossRefGoogle Scholar
  88. 88.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., N.Y.: Wiley, 2001.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Mohadeseh Safaei
    • 1
    Email author
  • Hadi Beitollahi
    • 2
  • Masoud Reza Shishehbore
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesIslamic Azad University, Yazd BranchYazdIran
  2. 2.Environment Department, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran

Personalised recommendations