Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 912–921 | Cite as

Interaction between Thallium and the Au(111) Surface. Quantum-Chemical Analysis

  • N. A. RogozhnikovEmail author


The interaction between thallium atoms and the Au(111) surface is studied using the cluster metal surface model and the density functional method. An adsorbed thallium atom forms a strong chemical bond with surface gold atoms. The adsorption energy barely depends on the location of the thallium atom. The electron density is appreciably displaced from thallium to gold in the process of adsorption. Thallium exists on the surface in the cationic form. The analysis of the density of state (DOS) spectra demonstrates that the atomic orbitals of thallium participate in the formation of lower molecular orbitals in the thallium–gold system when the surface is slightly filled with thallium. When the surface is filled to a substantial degree, the contribution of thallium to the molecular orbitals with the least negative energy appreciably grows. The possible change in the electronic work function upon the surface modification of gold with the adsorbed thallium is estimated.


quantum chemistry surface adsorption gold thallium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adžić, R.R. and Despić, A.R., Catalytic effect of metal adatoms deposited at underpotential, J. Chem. Phys., 1974, vol. 61, no. 8, pp. 3482–3483.Google Scholar
  2. 2.
    Petrii, O.A. and Lapa, A.S., Electrochemistry of adatomic layers, in Itogi Nauki Tekh., Ser.: Elektrokhim., Polukarov, Yu.M., Ed, Moscow: VINITI, 1987, vol. 24, pp. 96–153.Google Scholar
  3. 3.
    Rodes, A., Feliu, J.M., Aldaz, A., and Clavilier, J., The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(III)/Cr(II), J. Electroanal. Chem. Interfacial Electrochem.,1989, vol. 271, nos. 1–2, pp. 127–139.Google Scholar
  4. 4.
    Chen, C.H., Washburn, N., and Gewirth, A.A., In situ atomic force microscope study of Pb underpotential deposition on Au(111): Structural properties of the catalytically active phase, J. Phys. Chem., 1993, vol. 97, no. 38, pp. 9754–9760.Google Scholar
  5. 5.
    Wang, J.X., Adzic, R.R., Magnussen, O.M., and Ocko, B.M., Structural evolution during electrocrystallization: deposition of Tl on Ag (100) from monolayer to bilayer and to bulk crystallites, Surf. Sci., 1995, vol. 344, nos. 1–2, pp. 111–121.Google Scholar
  6. 6.
    Ball, M., Lucas, C.A., Markovic, N.M., Murphy, B.M., Steadman, P., Schmidt, T.J., Stamenkovic, V., and Ross, P.N., X-ray scattering studies of irreversibly adsorbed bismuth on the Pt(111) electrode surface, Langmuir, 2001, vol. 17, no. 19, pp. 5943–5946.Google Scholar
  7. 7.
    Adžić, R.R., Wang, J., and Ocko, B.M., Structure of metal adlayers during the course of electrocatalytic reactions: O2 reduction on Au(111) with Tl adlayers in acid solutions, Electrochim. Acta, 1995, vol. 40, no. 1, pp. 83–89.Google Scholar
  8. 8.
    Pošcus, D., Agafonovas, G., and Jurgaitiene̊, I., Effect of thallium ions on the adsorption of cyanide-containing species from cyanide and dicyanoaurate solutions on a polycrystalline gold electrode, J. Electroanal. Chem., 1997, vol. 425, nos. 1–2, pp. 107–115.Google Scholar
  9. 9.
    Gojo, M., Stanković, V.D., and Poljaček, S.M., Electrochemical deposition of gold in citrate solution containing thallium, Acta Chim. Slov., 2008, vol. 55, pp. 333–337.Google Scholar
  10. 10.
    McJntyre, J.D.E. and Peck, W.F., Electrodeposition of gold: depolarization effects induced by heavy metal ions, J. Electrochem. Soc., 1976, vol. 123, no. 12, pp. 1800–1813.Google Scholar
  11. 11.
    Bek, R.Yu., Zelinskii, A.G., Ovchinnikova, S.N., and Vais, A.A. Catalytic activity of thallium, lead, and bismuth adatoms in the gold dissolution reaction in cyanide solutions: A comparative characterization, Russ. J. Electrochem., 2004, vol. 40, no. 2, pp. 123–129.Google Scholar
  12. 12.
    Nicol, M.J., The anodic behaviour of gold. Part II—Oxidation in alkaline solutions, Gold Bull., 1980, vol. 13, no. 3, pp. 105–111.Google Scholar
  13. 13.
    Bek, R.Yu., Comparison of catalytic activity of thallium and lead adatoms at the gold electrodeposition and dissolution in cyanide solutions, Russ. J. Electrochem., 2008, vol. 44, no. 9, pp. 1078–1082.Google Scholar
  14. 14.
    Kolb, D.M., Leutloff, D., and Przasnyski, M., Optical properties of gold electrode surfaces covered with metal monolayers, Surf. Sci., 1975, vol. 47, no. 2, pp. 622–634.Google Scholar
  15. 15.
    Schultze, J.W. and Dickertmann, D., Potentiodynamic desorption spectra of metallic monolayers of Cu, Bi, Pb, Tl, and Sb adsorbed at (111), (100), and (110) planes of gold electrodes, Surf. Sci., 1976, vol. 54, no. 2, pp. 489–505.Google Scholar
  16. 16.
    Niece, B.K. and Gewirth, A.A., Potential-step chronocoulometric and quartz crystal microbalance investigation of underpotentially deposited Tl on Au(111) electrodes, J. Phys. Chem. B, 1998, vol. 102, no. 5, pp. 818–823.Google Scholar
  17. 17.
    Polewska, W., Wang, J.X., Ocko, B.M., and Adzic, R.R., Scanning tunneling microscopy of electrodeposited thallium monolayers on Au(111) in alkaline solution, J. Electroanal. Chem., 1994, vol. 376, nos. 1–2, pp. 41–47.Google Scholar
  18. 18.
    Toney, M.F., Gordon, J.G., Samant, M.J., Borges, G.L., Melroy, O.L., Yee, D., and Sorensen, L.B., In-situ atomic structure of underpotentially deposited monolayers of Pb and T1 on Au(111) and Ag(111): A surface X-ray scattering study, J. Phys. Chem., 1995, vol. 99, no. 13, pp. 4733–4744.Google Scholar
  19. 19.
    Wang, J.X., Adžić, R.R., Magnussen, O.M., and Ocko, B.M., Structure of electrodeposited Tl overlayers on Au(100) studied via surface X-ray scattering, Surf. Sci., 1995, vol. 335, pp. 120–128.Google Scholar
  20. 20.
    Hansen, M., and Anderko, K., Constitution of Binary Alloys, New York: McGraw-Hill, 1958.Google Scholar
  21. 21.
    State Diagrams of Binary Metallic Systems, Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996. vol. 1.Google Scholar
  22. 22.
    Kuznetsov, A.M., Korshin, G.V., and Saifullin, A.R., Quantum-chemical investigation of the adsorption of thallium on metals of the copper subgroup, Sov. Electrochem., 1990, vol. 26, p. 606.Google Scholar
  23. 23.
    Bicelli, L.P., Bozzini, B., Mele, C., and D’Urzo, L., A review of nanostructural aspects of metal electrodeposition, Int. J. Electrochem. Sci., 2008, vol. 3, no. 4, pp. 356–408.Google Scholar
  24. 24.
    Liu, F.L., Zhao, Y.F., Li, X.Y., and Hao, F.Y., Ab initio study of the structure and stability of MnTln (M = Cu, Ag, Au; n = 1, 2) clusters, J. Mol. Struct.: THEOCHEM, 2007, vol. 809, nos. 1–3, pp. 189–194.Google Scholar
  25. 25.
    Pershina, V., Anton, J., and Jacob, T., Electronic structures and properties of MAu and MOH, where M = Tl and element 113, Chem. Phys. Lett., 2009, vol. 480, nos. 4–6, pp. 157–160.Google Scholar
  26. 26.
    Pershina, V., Borschevsky, A., Anton, J., and Jacob, T., Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold, J. Chem. Phys., 2010, vol. 133, no. 10, p. 104304.Google Scholar
  27. 27.
    Zaitsevskii, A, Titov, A.V., Rusakov, A.A., and van Wüllen, C., Ab initio study of element 113–gold interactions, Chem. Phys. Lett., 2011, vol. 508, nos. 4–6, pp. 329–331.Google Scholar
  28. 28.
    Fox-Beyer, B.S. and van Wüllen, C., Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials, Chem. Phys., 2012, vol. 395, pp. 95–103.Google Scholar
  29. 29.
    Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.Google Scholar
  30. 30.
    König, S., Gäggler, H.W., Eichler, R., Haenssler, F., Soverina, S., Dressler, R., Friedrich, S., Piguet, D., and Tobler, R., The Production of Long-Lived Thallium-Isotopes and Their Thermochromatography Studies on Quartz and Gold, PSI Annual Report 2005, Bern: Paul Scherrer Institut, 2006.Google Scholar
  31. 31.
    Muther, B., Eichler, R., and Gäggeler, H. W., Thermochormatography of 212Pb and 200–202Tl on Quartz and Gold, PSI Annual Report 2007, Bern: Paul Scherrer Institut, 2008.Google Scholar
  32. 32.
    Serov, A., Eichler, R., Türler, A., Wittwer, D., Gäggeler, H.W., Dressler, R., Piguet, D., and Vögele, A., Interaction of Thallium Species with Quartz and Gold Surfaces, PSI Annual Report 2010, Bern: Paul Scherrer Institut, 2011.Google Scholar
  33. 33.
    Serov, A., Eichler, R., Dressler, R., Piguet, D., Türler, A., Vögele, A., Wittwer, D., and Gäggeler, H.W., Adsorption interaction of carrier-free thallium species with gold and quartz surfaces, Radiochim. Acta, 2013, vol. 101, no. 7, pp. 421–426.Google Scholar
  34. 34.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 1993, vol. 14, no. 11, pp. 1347–1363.Google Scholar
  35. 35.
    Neese, F., The ORCA program system, WIREs Comput. Mol. Sci., 2012, vol. 2, no. 1, pp. 73–78.Google Scholar
  36. 36.
    Koch, W. and Holthausen, M.C., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001.Google Scholar
  37. 37.
    Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648–5652.Google Scholar
  38. 38.
    Stephens, P.J, Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, no. 45, pp. 11623–11627.Google Scholar
  39. 39.
    Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, vol, 82, no. 1, pp. 299–310.Google Scholar
  40. 40.
    Weinhold, F., Natural bond orbital method, in Encyclopedia of Computational Chemistry, Schleyer, P.V.R., Allinger, N.L., Clark T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., and Schreiner, P.R., Eds., Chichester: Willey, 1998. vol. 3, pp. 1792–1811.Google Scholar
  41. 41.
    Glendening, E.D., Landis, C.R., and Weinhold, F., Natural bond orbital methods, WIREs Comput. Mol. Sci., 2012, vol. 2, no. 1, pp. 1–42.Google Scholar
  42. 42.
    Titmuss, S., Wander, A., and King, D.A., Reconstruction of clean and adsorbate-covered metal surfaces, Chem. Rev., 1996, vol. 96, no. 4, pp. 1291–1306.Google Scholar
  43. 43.
    Pierce, M.S., Chang, K.-C., Hennessy, D.C., Komanicky, V., Menzel, A., and You, H., CO-induced lifting of Au(001) surface reconstruction, J. Phys. Chem. C, 2008, vol. 112, no. 7, pp. 2231–2234.Google Scholar
  44. 44.
    Dobson, P.J., The surface structure of gold, Gold Bull., 1974, vol. 7, no. 1, pp. 15–19.Google Scholar
  45. 45.
    Greenwood, N.N. and Earnshow, A., Chemistry of Elements, Oxford: Butterworth-Heinemann, 1998.Google Scholar
  46. 46.
    Boys, S.F. and Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys., 1970, vol. 19, no. 4, pp. 553–566.Google Scholar
  47. 47.
    Jensen, F., Introduction to Computational Chemistry, Chichester: Wiley, 2007.Google Scholar
  48. 48.
    Emsley, J., The Elements, Oxford: Clarendon Press, 1991.Google Scholar
  49. 49.
    Stepanov, N.F., Kvantovaya mekhanika i kvantovaya khimiya (Quantum Mechanics and Quantum Chemistry), Moscow: Mir, 2001.Google Scholar
  50. 50.
    O’Boyle, N.M., Tenderholt, A.L., and Langner, K.M., CCLIB: a library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, vol. 29, no. 5, pp. 839–845.Google Scholar
  51. 51.
    Roberts, M.W. and McKee, C.S., Chemistry of the Metal-Gas Interface, Oxford: Clarendon Press, 1978.Google Scholar
  52. 52.
    Verhoef, R.W., and Asscher, M., The work function of adsorbed alkalis on metals revisited: a coverage-dependent polarizability approach, Surf. Sci., 1997, vol. 391, nos. 1–3, pp. 11–18.Google Scholar
  53. 53.
    Young, D.C., Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, New York: Wiley, 2001.Google Scholar
  54. 54.
    Clark, T., Quantum mechanics, in Chemoinformatics: A textbook, Gasteiger, J. and Engel, T., Eds., Weinheim: Wiley-WCH, 2003, ch. VII.2, pp. 947–976.Google Scholar
  55. 55.
    Nazmutdinov, R.R., Zinkicheva, T.T., Probst, M., Lust, K., and Lust, E., Adsorption of halide ions from aqueous solutions at a Cd(0001) electrode surface: quantum chemical modelling and experimental study, Surf. Sci., 2005, vol. 577, nos. 2–3, pp. 112–126.Google Scholar
  56. 56.
    Ivaništšev, V., Nazmutdinov, R.R., and Lust, E., Density functional theory study of the water adsorption at Bi(111) electrode surface, Surf. Sci., 2010, vol. 604, nos. 21–22, pp. 1919–1927.Google Scholar
  57. 57.
    Ivaništšev, V., Nazmutdinov, R.R., and Lust, E., A comparative DFT study of the adsorption of H2O molecules at Bi, Hg, and Ga surfaces, Surf. Sci., 2013, vol. 609, pp. 91–99.Google Scholar
  58. 58.
    Chiarotti, G., The physics of solid surface, in Springer Handbook of Condensed Matter and Materials Data, Martienssen, W. and Warlimont, H., Eds., Berlin: Springer, 2005, ch. 5.2, pp. 979–1030.Google Scholar
  59. 59.
    Fall, C., Ab initio study of the work functions of elemental metal crystals, Ph.D. Thesis, Lausanne: École Politechnique Fédérale de Lausanne, 1999.Google Scholar
  60. 60.
    Shakirova, S.A. and Serova, E.V., Work function measurements of Gd/W(111) with and without silicon interface layers: field emission study, Surf. Sci., 1999, vol. 422, nos. 1–3, pp. 24–32.Google Scholar
  61. 61.
    Feydt, J., Elbe, A., Engelhard, H., Meister, G., and Goldmann, A., Photoemission studies of the W(110)/Ag interface, Surf. Sci., 2000, vol. 452, nos. 1–3, pp. 33–43.Google Scholar
  62. 62.
    Binns, C. and Norris, C., The epitaxial growth of thallium on copper (100): A study by LEED, AES, UPS and EELS, Surf. Sci., 1982, vol. 115, no. 2, pp. 395–416.Google Scholar
  63. 63.
    Martienssen, W., The elements, in Springer Handbook of Condensed Matter and Materials Data, Martienssen, W. and Warlimont, H., Eds., Berlin: Springer, 2005, pp. 41–43.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations