Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 979–989 | Cite as

Effect of the Composition and Structure of Pt(Cu)/C Electrocatalysts on Their Stability under Different Stress Test Conditions

  • E. A. Moguchikh
  • A. A. AlekseenkoEmail author
  • V. E. Guterman
  • N. M. Novikovsky
  • N. Yu. Tabachkova
  • V. S. Menshchikov
Article

Abstract

Stability is one of the most important characteristics of electrocatalysts used in low-temperature fuel cells with a proton exchange membrane. The corrosion-morphological stability of supported electrocatalysts containing platinum and platinum-copper nanoparticles with ~20 wt % Pt was evaluated under the conditions of voltammetry stress testing corresponding to different degradation mechanisms. The effect of the difference in the architecture of Pt–Cu nanoparticles on the stability of catalysts and changes in their composition as a result of stress tests were studied. At close values of the electrochemically active surface area (ECAS), the carbon-supported bimetallic catalysts demonstrated significantly higher stability compared to the commercial Pt/C catalysts. The Pt(Cu)/C catalyst obtained by sequential deposition of copper and platinum showed the highest resistance to the degradation and selective dissolution of copper during the testing.

Keywords

platinum nanoparticles core–shell structure stress testing Pt–Cu nanoparticles fuel cell durability catalyst stability degradation mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holton, O.T. and Stevenson, J.W., The Role of Platinum in Proton Exchange Membrane Fuel Cells, Platinum Met. Rev., 2013, vol. 57, p. 259.CrossRefGoogle Scholar
  2. 2.
    Singh, R.N., Awasthi, R., and Sharma, C.S., Review: An overview of recent development of platinum-based cathode materials for direct methanol fuel cells, Int. J. Electrochem. Sci., 2014, vol. 9, p. 5607.Google Scholar
  3. 3.
    Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, p. 191.CrossRefGoogle Scholar
  4. 4.
    Borup, R., Meyers, J., Pivovar, B., Kim, Yu.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., and Wood, D., More scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.CrossRefGoogle Scholar
  5. 5.
    Katsounaros, I., Cherevko, S., Zeradjanin, A.R., and Mayrhofer, K.J.J., Oxygen electrochemistry as a cornerstone for sustainable energy conversion, Angew. Chem. Int. Ed., 2014, vol. 53, p. 102.CrossRefGoogle Scholar
  6. 6.
    Jung, N., Chung, D.Y., Ryu, J., Yoo, S.J., and Sung, Y.-E., Pt-based nanoarchitecture and catalyst design for fuel cell applications, Nano Today, 2014, vol. 9, p. 433.CrossRefGoogle Scholar
  7. 7.
    Stamenkovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces, J. Phys. Chem. B, 2002, vol. 106, p. 11970.CrossRefGoogle Scholar
  8. 8.
    Pavlov, V.I., Gerasimova, E.V., Zolotukhina, E.V., Dobrovolsky, Y.A., Don, G.M., and Yaroslavtsev, A.B., Degradation of Pt/C electrocatalysts having different morphology in low-temperature PEM fuel cells, Nanotechnologies in Russia, 2016, vol. 11, p. 743.CrossRefGoogle Scholar
  9. 9.
    Meier, J.C., Galeano, C., Katsounaros, I., Witte, J., Bongard, H.J., Topalov, A.A., Baldizzone, C., Mezzavilla, S., Schüth, F., and Mayrhofer, K.J.J., Design criteria for stable Pt/C fuel cell catalysts, Beilstein J. Nanotechnol., 2014, vol. 5, p. 44.CrossRefGoogle Scholar
  10. 10.
    Yano, H., Watanabea, M., Iiyamaa, A., and Uchida, H., Particle-size effect of Pt cathode catalysts on durability in fuel cells, Nano Energy, 2016, vol. 29, p. 323.CrossRefGoogle Scholar
  11. 11.
    Holby, E.F., Sheng, W., Shao-Horn, Y., and Morgan, D., Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen, Energy Environ. Sci., 2009, vol. 2, p. 865.CrossRefGoogle Scholar
  12. 12.
    Hasche, F., Oezaslan, M., and Strasser, P., Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts, Chem-CatChem., 2011, vol. 3, p. 1805.Google Scholar
  13. 13.
    Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Tabachkova, N.Yu., and Volochaev, V.A., The relationship between activity and stability of deposited platinum–carbon electrocatalysts, Russ. J. Electrochem., 2017, vol. 53, p. 531.CrossRefGoogle Scholar
  14. 14.
    Park, Yu.-Ch., Kakinuma, K., Uchida, M., Uchida, H., and Watanabe M., Deleterious effects of interim cyclic voltammetry on Pt/carbon black catalyst degradation during start-up/shutdown cycling evaluation, Electrochim. Acta, 2014, vol. 123, p. 84.CrossRefGoogle Scholar
  15. 15.
    Antolini, E., Salgado, J.R.C., and Gonzalez, E.R., The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt–Co catalyst, J. Power Sources, 2006, vol. 160, p. 957.CrossRefGoogle Scholar
  16. 16.
    Cherevko, S., Kulyk, N., and Mayrhofer, K.J.J., Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum, Nano Energy, 2016, vol. 29, p. 275.CrossRefGoogle Scholar
  17. 17.
    Stamenkovic, V.R., Mun, S.B., Mayrhofer, K.J.J., Ross, Ph.N., and Markovic, N.M., Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: ptskin versus pt-skeleton surfaces, J. Am. Chem. Soc., 2006, vol. 128, p. 8813.CrossRefGoogle Scholar
  18. 18.
    Hasché, F., Oezaslan, M., and Strasser, P., Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 15251.CrossRefGoogle Scholar
  19. 19.
    Capelo, A., Esteves, M.A., Sa, A.I., Silva, R.A., Cangueiro, L., Almeida, A., Vilar, R., and Rangel, C.M., Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support, Int. J. Hydrogen Energy, 2016, vol. 41, p. 12962.CrossRefGoogle Scholar
  20. 20.
    Baschuk, J.J. and Li, X., Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Res., 2001, vol. 25, p. 695.CrossRefGoogle Scholar
  21. 21.
    Yan, W-M., Chu, H., Lu, M-X., Weng, F-B., Jung, G.-B., and Lee, Ch., Degradation of proton exchange membrane fuel cells due to CO and CO2 poisoning, J. Power Sources, 2009, vol. 188, p. 141.CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Chen, S., Wang, Y., Ding, W., Wu, R., Li, L., Qi, X., and Wei, Z., Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test, J. Power Sources, 2015, vol. 273, p. 62.CrossRefGoogle Scholar
  23. 23.
    Ohma, A., Shinohara, K., Iiyama, A., Yoshida, T., and Daimaru, A., Fuel cells by FCCJ membrane, catalyst, MEA WG membrane and catalyst performance targets for automotive, ECS Trans., 2011, vol. 41, p. 775.Google Scholar
  24. 24.
    Hodnik, N., Jozinovic, B., Zorko, M., and Gaberscek, M., Stability of commercial Pt/C low temperature fuel cell catalyst: electrochemical IL-SEM study, Acta Chim. Slov., 2014, vol. 61, p. 280.Google Scholar
  25. 25.
    Kim, G.H., Cheon, J.Y., Shin, T.J., Park, J.Y., and Joo, S.H., Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction, Carbon, 2016, vol. 101, p. 449.CrossRefGoogle Scholar
  26. 26.
    Riese, A., Banham, D., Ye, S., and Sun X., Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports, J. Electrochem. Soc., 2015, vol. 162, p. F783.Google Scholar
  27. 27.
    Sui, Sh., Wang, X., Zhou, X., Suc, Yu., Riffatc S., and Liu, Ch., A comprehensive review of Pt electrocatalysts for oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells, J. Mater. Chem. A, 2017, vol. 5, p. 1808.CrossRefGoogle Scholar
  28. 28.
    Sharma, S. and Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts, J. Power Sources, 2012, vol. 208, p. 96.CrossRefGoogle Scholar
  29. 29.
    Shao, Y., Yin, G., and Gao Y., Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources, 2007, vol. 171, p. 558.CrossRefGoogle Scholar
  30. 30.
    Alekseenko, A.A., Belenov, S.V., Volochaev, V.A., Novomlinskiy, I.N., and Guterman, V.E., Cu@Pt/C catalysts: synthesis, structure, activity in oxygen reduction reaction, Condens. Matter Interphases, 2016, vol. 18, p. 460.Google Scholar
  31. 31.
    Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Yu., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and Pt–Ag/C electrocatalysts, Nanotechnol. Russ., 2016, vol. 11, p. 287.CrossRefGoogle Scholar
  32. 32.
    Perez, J., Paganin, V.A., and Antolini, E. Particle size effect for ethanol electro-oxidation on Pt/C catalysts in half-cell and in a single direct ethanol fuel cell, J. Electroanal. Chem., 2011, vol. 654, p. 108.Google Scholar
  33. 33.
    Chiang, Y-Ch., Liang, Ch-Ch., and Chung, Ch-P., Characterization of platinum nanoparticles deposited on functionalized graphene sheets, Materials, 2015, vol. 8, p. 6484.CrossRefGoogle Scholar
  34. 34.
    Zhu, H., Li, X., and Wang, F., Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 9151.CrossRefGoogle Scholar
  35. 35.
    Pryadchenko, V.V., Srabionyan, V.V., Belenov, S.V., Volochaev, V.A., Kurzin, A.A., Avakyan, L.A., Zizak, I., Guterman, V.E., and Bugaev, L.A., Bimetallic PtCu nanoparticles in PtCu/C electrocatalysts: structural and electrochemical characterization, Appl. Catal. A, 2016, vol. 525, p. 226.CrossRefGoogle Scholar
  36. 36.
    Alekseenko, A.A., Belenov, S.V., Volochaev, V.A., Novomlinskiy, I.N., and Guterman, V.E., Cu@Pt/C catalysts: synthesis, structure, activity in oxygen reduction reaction, Advanced Materials: Techniques, Physics, Mechanics and Applications, Springer Proc. Phys., Parinov, I.A., S.-H. Chang, and M. Jani, Eds., Heidelberg: Springer, 2017, vol. 193.Google Scholar
  37. 37.
    Leontyev, I.N., Leontyeva, D.V., Kuriganova, A.B., Popov, Y.V., Maslova, O.A., Glebova, N.V., Nechitailov, A.A., Zelenina, N.K., Tomasov, A.A., Hennet, L., and Smirnova, N.V., Characterization of the electrocatalytic activity of carbon-supported platinum-based catalysts by thermal gravimetric analysis, Mendeleev Commun., 2015, vol. 25, p. 468.CrossRefGoogle Scholar
  38. 38.
    Inaba, M., Ito, H., Tsuji, H., Wada, T., Banno, M., and Yamada, H., Effect of core size on activity and durability of Pt core–shell catalysts for PEFCs, ECS Trans., 2010, vol. 33, p. 231.CrossRefGoogle Scholar
  39. 39.
    Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Rui Lin, Tabachkova, N.Yu., and Safronenko, O.I., Activity and Stability of Pt/C and Pt–Cu/C Electrocatalysts, Electrocatalysis, 2018, vol. 9, p. 550.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Moguchikh
    • 1
  • A. A. Alekseenko
    • 1
    Email author
  • V. E. Guterman
    • 1
  • N. M. Novikovsky
    • 1
  • N. Yu. Tabachkova
    • 2
  • V. S. Menshchikov
    • 1
  1. 1.Faculty of ChemistrySouthern Federal UniversityRostov-on-DonRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations