Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 937–948 | Cite as

Methanol Electrooxidation on PtM/C (M = Ni, Co) and Pt/(SnO2/C) Catalysts

  • V. S. MenshchikovEmail author
  • S. V. Belenov
  • V. E. Guterman
  • I. N. Novomlinskiy
  • A. K. Nevel’skaya
  • A. Yu. Nikulin
Article

Abstract

We investigate the activity of bimetallic PtM/C (M = Ni, Co) catalysts with different microstructures and platinum catalysts supported on a nanostructured composite carrier (SnO2/C) in the electrooxidation reaction of methanol. For bimetallic catalysts, the effect of heat treatment on their structural and functional characteristics is also studied. Among bimetallic catalysts in the as-obtained state, the Pt@Ni/C catalyst prepared by the subsequent reduction of nickel and platinum from solutions of their compounds exhibited the highest activity in the methanol electrooxidation, significantly exceeding that for the commercial Pt/C product. Heat treatment at 350°C increased the activity of the PtCo/C catalyst containing nanoparticles of a solid solution but adversely affected the tolerance of all the studied bimetallic catalysts to the intermediate products of methanol oxidation. All the studied Pt/(SnO2/C) materials demonstrated a higher mass activity in the electrooxidation reaction of methanol compared to commercial Pt/C and bimetallic systems, while the catalyst with a weight fraction of platinum of 12% and a molar ratio of Pt: SnO2 of 1: 1.1 showed the highest mass activity.

Keywords

methanol electrooxidation bimetallic catalysts composite support tin dioxide platinum nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Costamagna, P. and Srinivasan, S., Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects, J. Power Sources, 2001, vol. 102, p. 242.CrossRefGoogle Scholar
  2. 2.
    Decoopman, B., Vincent, R., Rosini, S., Paganelli, G., and Thivel, P.-X., Proton exchange membrane fuel cell reversible performance loss induced by carbon monoxide produced during operation, J. Power Sources, 2016, vol. 324, p. 492.CrossRefGoogle Scholar
  3. 3.
    Sayadi, A. and Pickup, G., Evaluation of methanol oxidation catalysts by rotating disc voltammetry, Electrochimica Acta, 2016, vol. 199, p. 12.CrossRefGoogle Scholar
  4. 4.
    Childers, C.L., Huang, H., and Korzeniewski, C., Formaldehyde yields from methanol electrochemical oxidation on carbon-supported platinum catalysts, Langmuir, 1999, vol. 15, p. 786.CrossRefGoogle Scholar
  5. 5.
    Jusys, Z., Kaiser, J., and Behm, R.J., Methanol electro-oxidation over Pt/C fuel cell catalysts: Dependence of product yields on catalyst loading, Langmuir, 2003, vol. 19, p 6759.Google Scholar
  6. 6.
    Banham, D.W. and Ye, S., Current status and future development of catalyst materials and catalyst layers for PEMFCs: An industrial perspective, ACS Energy Lett., 2017, vol. 2, p. 629.CrossRefGoogle Scholar
  7. 7.
    Cui, C.H., Li, H.H., and Yu, S.H., Large scale restructuring of porous Pt–Ni nanoparticle tubes for methanol oxidation: A highly reactive, stable, and restorable fuel cell catalyst, Chem. Sci., 2011, vol. 2, p. 1611.CrossRefGoogle Scholar
  8. 8.
    Jeon, M.K., Zhang, Y., and McGinn, P.J., A Comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electroreduction reaction, Electrochimica Acta, 2010, vol. 55, p. 5318.Google Scholar
  9. 9.
    Chen, M., Lou, B., Ni, Z., Xu, B., PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell, Electrochimica Acta, 2015, vol. 165, p. 105.CrossRefGoogle Scholar
  10. 10.
    Ma, X., Luo, L., Zhu, L., Yu, L., Sheng, L., An, K., Ando, Y., and Zhao, X., Pt–Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation, J. Power Sources, 2013, vol. 241, p. 274.CrossRefGoogle Scholar
  11. 11.
    Xu, C., Liu, Y., Wang, J., Geng, H., and Qiu, H., Fabrication of nanoporous Cu–Pt(Pd) core/shell Structure by galvanic replacement and its application in electrocatalysis, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4626.CrossRefGoogle Scholar
  12. 12.
    Wang, M., Zhang, W., Wang, J., Minett, A., Lo, V., Liu, H., and Chen, J., Mesoporous hollow PtCu nanoparticles for electrocatalytic oxygen reduction reaction, J. Mater. Chem. A, 2013, vol. 1, p. 2391.CrossRefGoogle Scholar
  13. 13.
    Sarkar, A. and Manthiram, A., Synthesis of Pt@Cu core–shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells, J. Phys. Chem. C, 2010, vol. 114, p. 4725.CrossRefGoogle Scholar
  14. 14.
    Smirnova, N.V., Kuriganova, A.B., Leont’eva, D.V., Leont’ev, I.N., and Mikheikin, A.S, Structural and electrocatalytic properties of Pt/C and Pt–Ni/C catalysts prepared by electrochemical dispersion, Kin. Catal., 2013, vol. 54, no. 2, p. 255.Google Scholar
  15. 15.
    Ozoemena, K.I. and Chen, S., Nanomaterials for Fuel Cell Catalysis, Ser.: Nanostructure Science and Technology, Lockwood, D.J., Ed., Springer, 2016.CrossRefGoogle Scholar
  16. 16.
    Hartl, K., Mayrhofer, K.J.J., Lopez, M., Goia, D., and Arenz, M., AuPt core–shell nanocatalysts with bulk Pt activity, Electrochem. Commun., 2010, vol. 12, p. 1487.CrossRefGoogle Scholar
  17. 17.
    Zeng, J., Yang, J., Lee, J.Y., and Zhou, W., Preparation of carbon-supported core–shell Au–Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core, J. Phys. Chem. B, 2006, vol. 110, p. 24606.CrossRefGoogle Scholar
  18. 18.
    Luo, J., Maye, M.M., Lou, Y., Han, L., Hepel, M., and Zhong, C.J., Catalytic activation of core–shell assembled gold nanoparticles as catalyst for methanol electro-oxidation, Catal. Today, 2002, vol. 77, p. 127.CrossRefGoogle Scholar
  19. 19.
    Fu, X.-Z., Liang, Y., Chen, S.-P., Lin, J.-D., and Liao, D.-W., Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media, Catal. Commun., 2009, vol. 10, p. 1893.CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Ma, C., Zhu, Y., Si, R., Cai, Y., Wang, J.X., and Adzic, R.R., Hollow core supported Pt monolayer catalysts for oxygen reduction, Catal. Today, 2013, vol. 202, p. 50.CrossRefGoogle Scholar
  21. 21.
    Bae, S.J., Yoo, S.J., Lim, Y., Kim, S., Lim, Y., Choi, J., Nahm, K.S., Hwang, S.J., Lim, T.H., Kim, S.K., and Kim, P., Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance, J. Mater. Chem., 2012, vol. 22, p 8820.Google Scholar
  22. 22.
    Xu, C., Hu, Y., Rong, J., Jiang, S.P., and Liu, Y., Ni hollow spheres as catalysts for methanol and ethanol electro-oxidation, Electrochem. Commun., 2007, vol. 9, p. 2009.CrossRefGoogle Scholar
  23. 23.
    Zhang, C., Zhu, A., Huang, R., Zhang, Q., and Liu, Q., Hollow nanoporous Au/Pt core–shell catalysts with nanochannels and enhanced activities towards electro-oxidation of methanol and ethanol, Int. J. Hydrogen Energy, 2014, vol. 39, p. 8246.CrossRefGoogle Scholar
  24. 24.
    Lasch, K., Hayn, G., Jorissen, L., Garche, J., and Besenhardt, O., Mixed conducting catalyst support materials for the direct methanol fuel cell, J. Power Sources, 2002, vol. 105, p. 305.CrossRefGoogle Scholar
  25. 25.
    Frolova, L., Lyskov, N., and Dobrovolsky, Yu., Nanostructured Pt/SnO2–SbOx–RuO2 electrocatalysts for direct alcohol fuel cells, Solid State Ionics, 2012, vol. 225, p. 92.CrossRefGoogle Scholar
  26. 26.
    Kuriganova, A.B. and Smirnova, N.V., Pt/SnOx–C composite material for electrocatalysis, Mendeleev Commun., 2014, vol. 24, p. 351.CrossRefGoogle Scholar
  27. 27.
    Higuchi, E., Miyata, K., Takase, T., and Inoue, H., Ethanol oxidation reaction activity of highly dispersed Pt/SnO2 double nanoparticles on carbon black, J. Power Sources, 2011, vol. 196, p. 1730.CrossRefGoogle Scholar
  28. 28.
    Odetola, C., Trevani, L., and Easton, E.B., Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier, J. Power Sources, 2015, vol. 294, p. 254.CrossRefGoogle Scholar
  29. 29.
    Handbook of Fuel Cells: Fundamental, Technology, and Applications, Vielstich, W., Lamm, A. and Gasteiger, H.A., Eds., Chichester: Wiley, 2003.Google Scholar
  30. 30.
    Liao, S., Holmes, K.-A., Tsaprailis, H., and Birss, V.I., High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol, J. Am. Chem. Soc., 2006, vol. 128, p. 3504.CrossRefGoogle Scholar
  31. 31.
    Bezerra, C.W., Zhang, L., Liu, H., Lee, K., Marques, A.L., Marques, E.P., Wang, H., and Zhang, J., A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction, J. Power Sources, 2007, vol. 173, p. 891.CrossRefGoogle Scholar
  32. 32.
    Han, M., Zeng, J., Xia, J., and Liao, S., Effect of thermal treatment on structural change of anode electrocatalysts for direct methanol fuel cells, Particuology, 2014, vol. 15, p. 45.CrossRefGoogle Scholar
  33. 33.
    Zou, L., Fan, J., Zhou, Y., Wang, C., Li, J., Zou, Z., and Yang, H., Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res., 2015, vol. 8, p. 2777.Google Scholar
  34. 34.
    Han, B.H., Carlton, C.E., Kongkanand, A., Kukreja, R.S., Theobald, B.R., Gan, L., O’Malley, R., Strasser, P., Wagner, F.T., and Shao-Horn, Y., Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells, Energy Environ. Sci., 2015, vol. 8, p. 258.CrossRefGoogle Scholar
  35. 35.
    Do, C.L., Pham, T.S., Nguyen, N.P., Tran, V.Q., and Pham, H.H., Synthesis and characterization of alloy catalyst nanoparticles PtNi/C for oxygen reduction reaction in proton exchange membrane fuel cell, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2015, vol. 6, p. 6.Google Scholar
  36. 36.
    Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., Di Salvo, F.J., and Abruña, H.D., Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nat. Mater., 2013, vol. 12, p. 81.Google Scholar
  37. 37.
    Guterman, V.E., Pustovaya, L.E., Guterman, A.V., and Vysochina, L.L. Borohydride synthesis of the Ptx–Ni/C electrocatalysts and investigation of their activity in the oxygen electroreduction reaction, Russ. J. Electrochem., 2007, vol. 43, p. 1091.Google Scholar
  38. 38.
    Guterman, A.V., Pakhomova, E.B., Guterman, V.E., Kabirov, Y.V., and Grigor’ev, V.P., Synthesis of nanostructured PtxNi/C and PtxCo/C catalysts and their activity in the reaction of oxygen electroreduction, Inorg. Mater., 2009, vol. 45, p. 767.CrossRefGoogle Scholar
  39. 39.
    Belenov, S.V., Volochaev, V.A., Pryadchenko, V.V., Srabionyan, V.V., Shemet, D.B., Tabachkova, N.Y., and Guterman, V.E., Phase behavior of Pt–Cu nanoparticles with different architecture upon their thermal treatment, Nanotechnol. Russ., 2017, vol. 12, nos. 3–4, p. 147.Google Scholar
  40. 40.
    Novomlinsiy, I.N., Guterman, V.E., Danilenko, M.V., and Volochaev, V.A., Platinum electrocatalysts supported on a composite oxide-carbon carrier, Russ. J. Electochem. (in press).Google Scholar
  41. 41.
    Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Belenov, S.V., Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts, Inorg. Mater., 2015, vol. 51, no. 12. p, 1258.Google Scholar
  42. 42.
    Pryadchenko, V.V., Srabionyan, V.V., Kurzin, A.A., Bulat, N.V., Shemet, D.B., Avakyan, L.A., Belenov, S.V., Volochaev, V.A., Zizak, I., Guterman, V.E., and Bugaev, L.A., Bimetallic PtCu core–shell nanoparticles in PtCu/C electrocatalysts: Structural and electrochemical characterization, Appl. Catal. A, 2016, vol. 525, p. 226.CrossRefGoogle Scholar
  43. 43.
    Guterman, V.E., Belenov, S.V., Pakharev, A.Yu., Min, M., Tabachkova, N.Yu., Mikheykina, E.B., Vysochina, L.L., and Lastovina, T.A., Pt–M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles, Int. J. of Hydrogen Energy, 2016, vol. 41, p. 1609.Google Scholar
  44. 44.
    Brugeman, S.A., Zekhtor, M.Yu., and Novikovskiy, N.M., “Universal Roentgen Spectra” (UniveRS), Certificate of state registration of the computer program no. 2010615318, 2010.Google Scholar
  45. 45.
    Guterman, V.E., Belenov, S.V., Lastovina, T.A., Fokina, E.P., Prutsakova, N.V., and Konstantinova, Y.B., Microstructure and electrochemically active surface area of PtM/C electrocatalysts, Russ. J. of Electrochemistry, 2011, vol. 47, p. 933.CrossRefGoogle Scholar
  46. 46.
    Ji. J., Wang, H., Ji, S., Yang, H., Li, X., and Wang, R., SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction, Electrochim. Acta, 2014, vol. 141, p. 13.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Menshchikov
    • 1
    Email author
  • S. V. Belenov
    • 1
  • V. E. Guterman
    • 1
  • I. N. Novomlinskiy
    • 1
  • A. K. Nevel’skaya
    • 1
  • A. Yu. Nikulin
    • 1
  1. 1.Department of ChemistrySouth Federal UniversityRostov-on-DonRussia

Personalised recommendations