Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 1006–1011 | Cite as

Electroreduction of Mo(VI) Compounds in Ammonium–Acetate Solutions

  • V. V. KuznetsovEmail author
  • M. A. Volkov
  • D. A. Zhirukhin
  • E. A. Filatova


The kinetics of cathodic reactions in ammonium acetate solutions proposed for electrodeposition of metallic molybdenum was studied. The reduction of molybdenum compounds in the oxidation state +6 was found to occur stepwise according to the scheme Mo(VI) → Mo(V) → Mo(III). The waves observed on the polarograms are complicated by adsorption effects. The reduction of molybdenum to the metallic state is possible only at high negative potentials of the cathode; under the polarographic analysis conditions, this wave was not recorded. The deposit that formed on the surface of the solid cathode during cathodic polarization (i = 0.5 A cm–2) contains both molybdenum in the metallic state and molybdenum oxides. The ratio between the electrolysis products depends on the temperature of solution: a decrease in the temperature leads to an increase in the amount of metallic molybdenum.


electrodeposition kinetics molybdenum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morley, Th.J., Penner, L., Schaffer, P., Ruth, Th.J., Benard, F., and Asselin, E., The deposition of smooth metallic molybdenum from aqueous electrolytes containing molybdate ions, Electrochem. Commun., 2012, vol. 15, pp. 78–80. doi 10.1016/j.elecom.2011.11.026CrossRefGoogle Scholar
  2. 2.
    Syed, R., Ghosh, S.K., Sastry, P.U., Sharma, G., Hubli, R.C., and Chakravartty, J.K. Electrodeposition of thick metallic amorphous molybdenum coating from aqueous electrolyte, Surf. Coat. Technol., 2015, vol. 261, pp. 15−20. doi 10.1016/j.surfcoat.2014.11.073Google Scholar
  3. 3.
    Haftbaradaran, A., Parvini-Ahmadi, N., and Yazdani, S., Electrodeposition and characterization of metallic molybdenum from aqueous electrolytes containing high acetate concentrations, Surf. Coat. Technol., 2017, vol. 324, pp. 1–6. doi 10.1016/j.surfcoat.2017.05.024CrossRefGoogle Scholar
  4. 4.
    Vas’ko, A.T., Elektrokhimiya molibdena i vol’frama (Electrochemistry of Molybdenum and Tungsten), Kiev: Naukova Dumka, 1977.Google Scholar
  5. 5.
    Landolt, D., Fundamental Aspects of Alloy Plating, Plating and Surface Finishing, 2001, vol. 88, pp. 70−79.Google Scholar
  6. 6.
    Dukstiene, N., Sinkeviciute, D., and Guobiene, A., Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2glass plate, Centr. Eur. J. Chem., 2012, vol.10, p. 1106–1118. doi 10.2478/s11532-012-0012-7Google Scholar
  7. 7.
    Inguanta, R., Spanò, T., Piazza, S., Sunseri, C., Barreca, F., Fasio, E., Neri, F., and Silipigni, L., Electrodeposition and characterization of Mo oxide nanostructures, Chem. Eng. Trans., 2015, vol. 43, pp. 685–690. doi 10.3303/CET1543115Google Scholar
  8. 8.
    Kuznetsov, V.V., Pavlov, M.R., Zimakov, D.I., Chepeleva, S.A., and Kudryavtsev, V.N., Elektrovosstanovlenie molibdat ionov v rastvorakh, soderzhashchikh ion ammoniya, Elektrokhimiya, 2004, vol. 40, pp. 813–819.Google Scholar
  9. 9.
    Termicheskie konstanty veshchestv (Thermal Constants of Substances), no. 7, Glushko, V.P., Ed., Moscow: VINITI, 1974.Google Scholar
  10. 10.
    Spravochnik po elektrokhimii (Handbook on Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.Google Scholar
  11. 11.
    Atlas of Eh–pH diagrams, National Institute of Advanced Industrial Science and Technology, Naoto Takeno, 2005.Google Scholar
  12. 12.
    Tyurin, A.G., Estimation and effect of molybdenum on chemical and electrochemical stability of iron–molybdenum alloys, Prot. Met., 2003, vol. 39, pp. 367–373.CrossRefGoogle Scholar
  13. 13.
    Pugolovkin, L.V., Borzenko, M.I., and Tsirlina, G.A., Isopolymolybdate adsorption as related to inhibition and self-inhibition of electrode processes, J. Electroanal. Chem., 2015, vol. 756, pp. 131–139. doi 10.1016/j.jelechem.2015.08.028CrossRefGoogle Scholar
  14. 14.
    Ingersoll, D., Kulesza, P.J., and Faulkner, L.R., Polyoxometallate-based layered composite films on electrodes, J. Electrochem. Soc., 1994, vol. 141, pp. 140−147. doi 10.1149/1.2054673CrossRefGoogle Scholar
  15. 15.
    Modes, B., Acetato complexes of Mo(V): A novel tetranuclear core based on metal−metal bonded {Mo2O4}2+ units, Inorg. Chem. Acta, 2008, vol. 361, pp. 2863–2870. doi 10.1016/j.ica.2008.02.015CrossRefGoogle Scholar
  16. 16.
    Sasaki, Y. and Sykes, A.G., Substitution reactions of molybdenum(III), (V) and (VI) ions in aqueous solutions, J. Less-Common Met., 1974, vol. 36, pp. 125–131. doi 10.1016/0022-5088(74)90091-5CrossRefGoogle Scholar
  17. 17.
    Khan, A.H., Mahmood, K., and Mehmood, Z., Redox properties of ethylenediaminetetra-acetic acid complex of molybdenum(V) Mo2O4 2+ in aqueous acidic solutions, J. Chem. Soc. Pak., 1997, vol. 19, pp. 87–92.Google Scholar
  18. 18.
    Botukhova, G.N., Borzenko, M.I., and Petrii, O.A., Vliyanie ionov ammoniya na elektrovosstanovlenie anionov na rtutnom elektrode, Elektrokhimiya, 2004, vol. 40, pp. 465–470.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Kuznetsov
    • 1
    Email author
  • M. A. Volkov
    • 1
  • D. A. Zhirukhin
    • 1
  • E. A. Filatova
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations