Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 893–901 | Cite as

Electrochemical Properties of Overoxidized Poly-3,4-Ethylenedioxythiophene

  • M. A. Kamensky
  • S. N. EliseevaEmail author
  • G. Láng
  • M. Ujvári
  • V. V. Kondratiev
Article
  • 2 Downloads

Abstract

The properties of poly(3,4-ethylenedioxythiophene) (PEDOT) films were studied electrochemically at high positive potentials (from–0.3 to 1.5 V relative to the Ag/AgCl electrode). A cyclic voltammetry (CV) study revealed the range of potentials (up to 1.3–1.5 V) where the cycling leads to significant changes in the electrochemical, structural, and morphological properties of the polymer film due to overoxidation. When the upper cycling potential Eup exceeded 1.4 V, the anodic current significantly increased during the first cycle and then decreased, which suggests a loss of the electroactivity of the polymer and degradation of its properties. In the high-frequency region of the impedance spectra of the PEDOT films, a semicircle appears after overoxidation, which indicates a notable increase of the charge transfer resistance in the system, in contrast to the films subjected to potentiodymanic processing in a limited range of potentials from–0.3 to 1.3 V. The effect of overoxidation on the polymer morphology was studied by scanning electron microscopy. The chemical state of elements in the structure of the polymer film was determined by X-ray photoelectron spectroscopy. The obtained data indicate that–S=O groups formed at the thiophene sulfur in the polymer.

Keywords

conducting polymers poly-3,4-ethylenedioxythiophene overoxidation cyclic voltammetry impedance spectroscopy electrochemical properties degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tourillon, G., in Handbook of Conducting Polymers, Skotheim, T.A., Ed., New York: Marcel Dekker, 1986.Google Scholar
  2. 2.
    Heinze, J. Electronically Conducting Polymers, in Top. Curr. Chem., vol. 152, Springer, 1990, p. 1.Google Scholar
  3. 3.
    Roncali, J., Conjugated Poly(Thiophenes): Synthesis, Functionalization, and Applications, Chem. Rev. (Washington, DC, U.S.), 1992. doi 10.1021/Cr00012a009Google Scholar
  4. 4.
    Inzelt, G., Pineri, M., Schultze, J.W., and Vorotyntsev, M.A., Electron and proton conducting polymers: recent developments and prospects, Electrochim. Acta, 2000, vol. 45, p. 1016. doi 10.1016/S0013-4686(00)00329-7Google Scholar
  5. 5.
    Novak, P., Muller, K., Santhanam, K.S.V., and Haas, O., Electrochemically active polymers for rechargeable batteries, Chem. Rev. (Washington, DC, U. S.), 1997. doi 10.1021/Cr941181oGoogle Scholar
  6. 6.
    Inzelt, G., Conducting Polymers: A New Era in Electrochemistry, Berlin: Springer, 2008.Google Scholar
  7. 7.
    Inzelt, G., Rise and rise of conducting polymers, J. Solid State Electrochem., 2011, vol. 15, p. 1007. doi 10.1007/s10008-011-1338-3Google Scholar
  8. 8.
    Holze, R. and Wu, Y.P., Intrinsically conducting polymers in electrochemical energy technology: Trends and progress, Electrochim. Acta, 2014, vol. 122, p. 1016. doi 10.1016/j.electacta.2013.08.100Google Scholar
  9. 9.
    Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R., Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future, Adv. Mater., 2000, vol. 12, p. 481. doi 10.1002/(sici)1521-4095(200004)12:7<481::aid-adma481>3.0.co;2-cGoogle Scholar
  10. 10.
    Murugan, A.V., Kwon, C.W., Campet, G., Kale, B.B., Maddanimath, T., and Vijayamohanan, K., Electrochemical lithium insertion into a poly(3,4-ethylenedioxythiophene) PEDOT/V2O5 nanocomposite, J. Power Sources, 2002, vol. 105, p. 1. doi 10.1016/s0378-7753(01)00992-2Google Scholar
  11. 11.
    Arbizzani, C., Balducci, A., Mastragostino, M., Rossi, M., and Soavi, F., Characterization and electrochemical performance of Li-rich manganese oxide spinel/poly(3,4-ethylenedioxythiophene) as the positive electrode for lithium-ion batteries, J. Electroanal. Chem., 2003, vol. 553, p. 125. doi 10.1016/S0022-0728(03)00305-XGoogle Scholar
  12. 12.
    Murugan, A.V., Viswanath, A.K., Campet, G., Gopinath, C.S., and Vijayamohanan, K., Enhancement of double-layer capacitance behavior and its electrical conductivity in layered poly(3,4-ethylenedioxythiophene)-based nanocomposites, Appl. Phys. Lett., 2005, vol. 87. doi 10.1063/1.2140468Google Scholar
  13. 13.
    Murugan, A.V., Novel organic-inorganic poly(3,4-ethylenedioxythiophene) based nanohybrid materials for rechargeable lithium batteries and supercapacitors, J. Power Sources, 2006, vol. 159, p. 312. doi 10.1016/j.jpowsour.2006.04.033Google Scholar
  14. 14.
    Zhan, L.Z., Song, Z.P., Zhang, J.Y., Tang, J., Zhan, H., Zhou, Y.H., and Zhan, C.M., PEDOT: Cathode active material with high specific capacity in novel electrolyte system, Electrochim. Acta, 2008, vol. 53, p. 1016. doi 10.1016/j.electacta.2008.06.053Google Scholar
  15. 15.
    Lei, C.H., Wilson, P., and Lekakou, C., Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors, J. Power Sources, 2011, vol. 196, p. 7823. doi 10.1016/j.jpowsour.2011.03.070Google Scholar
  16. 16.
    Fabre-Francke, I., Aubert, P.H., Alfonsi, S., Vidal, F., Sauques, L., and Chevrot, C., Electropolymerization of 3,4-ethylenedioxythiophene within an insulating nitrile butadiene rubber network: Application to electroreflective surfaces and devices, Sol. Energy Mater. Sol. Cells, 2012, vol. 99, p. 109. doi 10.1016/j.solmat. 2011.07.004Google Scholar
  17. 17.
    Hong, S.F. and Chen, L.C., Nano-Prussian blue analogue/PEDOT:PSS composites for electrochromic windows, Sol. Energy Mater. Sol. Cells, 2012, vol. 104, p. 1016. doi 10.1016/j.solmat.2012.04.032Google Scholar
  18. 18.
    Romyen, N., Thongyai, S., Praserthdam, P., and Sotzing, G.A., Enhancement of poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonate) properties by poly(vinyl alcohol) and doping agent as conductive nano-thin film for electronic application, J. Mater. Sci.: Mater. Electron., 2013, vol. 24, p. 2897. doi 10.1007/s10854-013-1188-0Google Scholar
  19. 19.
    Trinh, N.D., Saulnier, M., Lepage, D., and Schougaard, S.B., Conductive polymer film supporting LiFePO4 as composite cathode for lithium ion batteries, J. Power Sources, 2013, vol. 221, p. 284. doi 10.1016/j.jpowsour.2012.08.006Google Scholar
  20. 20.
    Kim, J., Park, H.S., Kim, T.H., Kim, S.Y., and Song, H.K., An inter-tangled network of redox-active and conducting polymers as a cathode for ultrafast rechargeable batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 1039. doi 10.1039/C3cp54624aGoogle Scholar
  21. 21.
    Wang, X., Shen, L., Li, H., Wang, J., Dou, H., and Zhang, X., PEDOT coated Li4 Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties, Electrochim. Acta, 2014, vol. 129, p. 283. doi 10.1016/j.electacta.2014.02.112Google Scholar
  22. 22.
    Cintora-Juarez, D., Perez-Vicente, C., Kazim, S., Ahmad, S., and Tirado, J.L., Judicious design of lithium iron phosphate electrodes using poly(3,4-ethylenedioxythiophene) for high performance batteries, J. Mater. Chem. A, 2015, vol. 3, p. 14254. doi 10.1039/c5ta03542bGoogle Scholar
  23. 23.
    Das, P.R., Komsiyska, L., Osters, O., and Wittstock, G., PEDOT: PSS as a Functional Binder for Cathodes in Lithium Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. 1149. doi 10.1149/2.0581504jesGoogle Scholar
  24. 24.
    Eliseeva, S.N., Levin, O.V., Tolstopjatova, E.G., Alekseeva, E.V., Apraksin, R.V., and Kondratiev, V.V., New functional conducting poly-3,4-ethylenedioxythiophene: polystyrene sulfonate/carboxymethycellulose binder for improvement of capacity of LiFePO4-based cathode materials, Mater. Lett., 2015, vol. 161, p. 117. doi 10.1016/j.matlet.2015.08.078Google Scholar
  25. 25.
    Eliseeva, S.N., Levin, O.V., Tolstopyatova, E.G., Alekseeva, E.V., and Kondratiev, V.V., Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries, Russ. J. Appl. Chem., 2015, vol. 88, p. 1146. doi 10.1134/S1070427215070071Google Scholar
  26. 26.
    Lee, J. and Choi, W., Surface Modification of Over-Lithiated Layered Oxides with PEDOT:PSS Conducting Polymer in Lithium-Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. 1149. doi 10.1149/2.0801504jesGoogle Scholar
  27. 27.
    Smolin, A.M., Novoselov, N.P., Babkova, T.A., Eliseeva, S.N., and Kondrat’ev, V.V., Use of composite films based on poly(3,4-ethylenedioxythiophene) with inclusions of palladium nanoparticles in voltammetric sensors for hydrogen peroxide, J. Anal. Chem., 2015, vol. 70, p. 967. doi 10.1134/S1061934815080171Google Scholar
  28. 28.
    Tolstopjatova, E.G., Eliseeva, S.N., Nizhegorodova, A.O., and Kondratiev, V.V., Electrochemical Properties of Composite Electrodes, Prepared by Spontaneous Deposition of Manganese Oxide into Poly-3,4-ethylenedioxythiophene, Electrochim. Acta, 2015, vol. 173, p. 40. doi 10.1016/j.electacta/2015.05.033Google Scholar
  29. 29.
    Zykwinska, A., Domagala, W., Pilawa, B., and Lapkowski, M., Electrochemical overoxidation of poly(3,4-ethylenedioxythiophene)—PEDOT studied by means of in situ ESR spectroelectrochemistry, Electrochim. Acta, 2005, vol. 50, p. 1625. doi 10.1016/j.electacta. 2004.10.026Google Scholar
  30. 30.
    Ujvári, M., Takacs, M., Vesztergom, S., Bazso, F., Ujhelyi, F., and Láng, G.G., Monitoring of the electrochemical degradation of PEDOT films on gold using the bending beam method, J. Solid State Electrochem., 2011, vol. 15, p. 1007. doi 10.1007/s10008-011-1472-yGoogle Scholar
  31. 31.
    Láng, G.G., Ujvári, M., Bazso, F., Vesztergom, S., and Ujhelyi, F., In situ monitoring of the electrochemical degradation of polymer films on metals using the bending beam method and impedance spectroscopy, Electrochim. Acta, 2012, vol. 73, p. 1016. doi 10.1016/j.electacta. 2012.01.068Google Scholar
  32. 32.
    Ujvári, M., Zalka, D., Vesztergom, S., Eliseeva, S., Kondratiev, V., and Láng, G.G., Electrochemical impedance measurements in non-stationary systems: application of the 4-dimensional analysis method for the impedance analysis of overoxidized poly(3,4-ethylenedioxythiophene)-modified electrodes, Bulg. Chem. Commun., 2017, vol. 49, p. 106.Google Scholar
  33. 33.
    Ujvári, M., Gubicza, J., Kondratiev, V., Szekeres, K.J., and Láng, G.G., Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation, J. Solid State Electrochem., 2015, vol. 19, p. 1247. doi 10.1007/s10008-015-2746-6Google Scholar
  34. 34.
    Láng, G.G., Ujvári, M., Vesztergom, S., Kondratiev, V., Gubicza, J., and Szekeres, K.J., The Electrochemical Degradation of Poly(3,4-ethylenedioxythiophene) Films Electrodeposited from Aqueous Solutions, Z. Phys. Chem., 2016, vol. 230, p. 1281. doi 10.1515/zpch-2016-0752Google Scholar
  35. 35.
    Zhuzhel’skii, D.V., Yalda, K.D., Spiridonov, V.N., Eliseeva, S.N., and Kondratiev, V.V., Electrochemical deposition of molybdenum oxide into films of poly(3,4-ethylenedioxythiophene) conducting polymer on glassy carbon substrates, Russ. J. Appl. Chem., 2016, vol. 89, p. 1252. doi 10.1134/s1070427216080061Google Scholar
  36. 36.
    Kondratiev, V.V., Malev, V.V., and Eliseeva, S.N., Composite electrode materials based on conducting polymers loaded with metal nanostructures, Russ. Chem. Rev., 2016, vol. 85, p. 1070. doi 10.1070/rcr4509Google Scholar
  37. 37.
    Fall, M., Diagne, A.A., Dieng, M.M., Deflorian, F., Rossi, S., Bonora, P.L., Volpe, C.D., and Aaron, J.J., Electrochemical impedance spectroscopy of poly(3-methoxythiophene) thin films in aqueous LiClO4 solutions, Synth. Met., 2005, vol. 155, p. 569. doi 10.1016/j.synthmet.2005.09.043Google Scholar
  38. 38.
    Refaey, S.A.M., Electrochemical impedance studies on the electrochemical properties of poly(3-methylthiophene) in aqueous solutions, Synth. Met., 2004, vol. 140, p. 87. doi 10.1016/s0379-6779(03)00357-6Google Scholar
  39. 39.
    Greczynski, G., Kugler, T., Keil, M., Osikowicz, W., and Fahlman, M., and Salaneck, W.R., Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: a mini-review and some new results, J. Electron Spectrosc. Relat. Phenom., 2001, vol. 121, p. 1016. doi 10.1016/s0368-2048(01)00323-1Google Scholar
  40. 40.
    King, Z.A., Shaw, C.M., Spanninga, S.A., and Martin, D.C., Structural, chemical and electrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) prepared with various counter-ions and heat treatments, Polymer, 2011, vol. 52, p. 1302. doi 10.1016/j.polymer.2011.01.042Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Kamensky
    • 1
  • S. N. Eliseeva
    • 1
    Email author
  • G. Láng
    • 2
  • M. Ujvári
    • 2
  • V. V. Kondratiev
    • 1
  1. 1.St. Petersburg State University, Institute of ChemistrySt. PetersburgRussia
  2. 2.Eötvös Loránd UniversityInstitute of ChemistryBudapestHungary

Personalised recommendations