Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 1022–1030 | Cite as

Comparing the Method and Hardware for Electrochemical Impedance with the Method of Measuring and Analyzing Electrochemical Noise

  • E. A. AstafevEmail author


The experimental techniques of the methods of impedance with an ac current and electrochemical noise are considered in detail. The main features, disadvantages, and limitations of the application of both methods are underlined and compared. The theoretical possibility of using a new method of electrochemical noise measurement to study electrochemical objects is shown. This method combines the method of impedance and traditional potentiometric and amperometric methods of electrochemical noise measurements.


electrochemical impedance electrochemical noise chemical power sources real part of impedance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, vol. 58, p. 337. doi 10.5006/1.3287684CrossRefGoogle Scholar
  2. 2.
    Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lakeev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742. doi 10.20964/2017.03.56CrossRefGoogle Scholar
  3. 3.
    Martinet, S., Durand, R., Ozil, P., Leblanc, P., and Blanchard, P., Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection, J. Power Sources, 1999, vol. 83, p. 93. doi 10.1016/S0378-7753(99)00272-4CrossRefGoogle Scholar
  4. 4.
    Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357. doi 10.1016/S0378-7753(02)00599-2CrossRefGoogle Scholar
  5. 5.
    Astafiev, E.A. and Dobrovolsky, Yu.A., The behavior of membrane-electrode units of polymeric fuel cells: electrochemical methods to study catalytic activity and corrosion resistance of electrodes, Al’ternativnaya Energetika i Ekologiya (in Russian), 2007, no. 12, p. 72.Google Scholar
  6. 6.
    Astafev, E.A., Lyskov, N.V., and Gerasimova, E.V., Research of polymer electrolyte fuel cell cathodes by electrochemical techniques, Al’ternativnaya Energetika i Ekologiya (in Russian), 2009, no. 8, p. 93.Google Scholar
  7. 7.
    Astafev, E.A. and Shkerin, S.N., Impedance measuring devices: Price-quality-functionality relationship, Al’ternativnaia Energetika i Ekologiya (in Russian), 2008, no. 2, p. 150.Google Scholar
  8. 8.
    Ukshe, A.E., Chikin, A.I., Bukun, N.G., and Astafev, E.A., Low-signal electrochemical methods for testing of electrochemical power sources in situ, Al’ternativnaia Energetika i Ekologiya (in Russian), 2010, no. 11, p. 117.Google Scholar
  9. 9.
    Bertocci, U. and Kruger, J., Studies of passive film breakdown by detection and analysis of electrochemical noise, Surf. Sci., 1980, vol. 101, p. 608. doi 10.1016/0039-6028(80)90653-6CrossRefGoogle Scholar
  10. 10.
    Cottis, R.A., The significance of electrochemical noise measurements on asymmetric electrodes, Electrochim. Acta, 2007, vol. 52, p. 7585. doi 10.1016/j.electacta. 2006.12.042CrossRefGoogle Scholar
  11. 11.
    Astafev, E.A., Ukshe, A.E., and Dobrovolskii, Yu.A., Hardware for measurement of electrochemical noise of chemical power sources, Pribory i Tekhnika Eksperimenta (in Russian), 2017, no. 6, p. 130. doi 10.7868/S0032816217050032Google Scholar
  12. 12.
    Liu, L., Pitting mechanism on an austenite stainless steel nanocrystalline coating investigate by electrochemical noise and in-situ AFM analysis, Electrochim. Acta, 2008, vol. 54, p. 768. doi 10.1016/j.electacta. 2008.06.076CrossRefGoogle Scholar
  13. 13.
    Astafev, E.A. and Manzhos, R.A., Wide dynamic range hardware for electrochemical noise measurement, Pribory i Tekhnika Eksperimenta (in Russian), 2018, no. 1, p. 149. doi 10.7868/S0032816217060192Google Scholar
  14. 14.
    Bertocci, U., Applications of a low noise potentiostat in electrochemical measurements, J. Electrochem. Soc., 1980, vol. 127, p. 1931. doi 10.1149/1.2130039CrossRefGoogle Scholar
  15. 15.
    Huet, F., Nogueira, R.P., Lailler, P., and Torcheux, L., Investigation of the high-frequency resistance of a leadacid battery, J. Power Sources, 2006, vol. 158, p. 1012. doi 10.1016/j.jpowsour.2005.11.026CrossRefGoogle Scholar
  16. 16.
    Xia, D.-H. and Behnamian, Y., Electrochemical noise: A review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 2015, vol. 51, p. 593. doi 10.1134/S1023193515070071CrossRefGoogle Scholar
  17. 17.
    Bertocci, U., Gabrielli, C., Huet, F., and Keddam, M., Noise resistance applied to corrosion measurements. I. Theoretical analysis, J. Electrochem. Soc., 1997, vol. 144, p. 31. doi 10.1149/1.1837361CrossRefGoogle Scholar
  18. 18.
    Abaturov, M.A. and Kanevsky, L.S. Anmicroprocessor measuring complex for studying of noise characteristics of chemical power sources, Elrktrohim. Energetika (in Russian), 2008, vol. 8, no. 4. p. 222.Google Scholar
  19. 19.
    Astafev, E.A., Multi-purpose high resolution device for measurement of electrochemical noise, Pribory i Tekhnika Eksperimenta (in Russian), 2018. doi 10.7868/S0032816218010123Google Scholar
  20. 20.
    Nyquist, H. Thermal agitation of electric charge in conductors, Phys. Rev., 1928. vol. 32, p. 110. doi 10.1103/PhysRev.32.110CrossRefGoogle Scholar
  21. 21.
    Ritter, S., Huet, F., and Cottis, R.A., Guideline for an assessment of electrochemical noise measurement devices, Mat. Corr., 2012, vol. 63, p. 297. doi 10.1002/maco.201005839CrossRefGoogle Scholar
  22. 22.
    Scandurra, G., Giusi, G., and Ciofi, C., Multichannel amplifier topologies for high-sensitivity and reduced measurement time in voltage noise measurements, IEEE Trans. Instrum. Meas., 2013, vol. 62, p. 1145. doi 10.1109/TIM.2012.2236719CrossRefGoogle Scholar
  23. 23.
    Blanc, G., Gabrielli, C., and Keddam, M., Measurement of electrochemical noise by a cross correlation method, Electrochim. Acta, 1975, vol. 20, p. 687. doi 10.1016/0013-4686(75)90069-9CrossRefGoogle Scholar
  24. 24.
    Sampietro, M., Accomando, G., Fasoli, L.G., Ferrari, G., and Gatti, E.C., High sensitivity noise measurement with a correlation spectrum analyzer, IEEE Trans. Instrum. Meas., 2000, vol. 49, p. 820. doi 10.1109/19.863931CrossRefGoogle Scholar
  25. 25.
    Ciofi, C., Crupi, F., and Pace, C., A new method for high-sensitivity noise measurements, IEEE Trans. Instrum. Meas., 2002, vol. 51, no. 4, p. 656. doi 10.1109/TIM.2002.803080CrossRefGoogle Scholar
  26. 26.
    Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid State Electrochem., 2018, vol. 22, p. 1839..doi 10.1007/s10008-018-3892-4CrossRefGoogle Scholar
  27. 27.
    Astafev, E.A., Ukshe, A.E., Leonova, L.S., Manzhos, R.A., and Dobrovolsky, Yu.A., Drift removal and processing features in electrochemical noise analysis, Russ. J. Electrochem., 2018, vol. 54, p. 913 (submitted). doi 10.1134/S0424857018120034Google Scholar
  28. 28.
    Cheng, Y.F., Luo, J.L., and Wilmott, M., Spectral analysis of electrochemical noise with different transient shapes, Electrochim. Acta, 2000, vol. 45, p. 1763. doi 10.1016/S0013-4686(99)00406-5CrossRefGoogle Scholar
  29. 29.
    Nigmatullin, R.R., Martemianov, S., Evdokimov, Yu.K., Denisov, E., Thomas, A., and Adiutantov, N., New approach for PEMFC diagnostics based on quantitative description of quasi-periodic oscillations, Int. J. Hydrogen Energy, 2016, vol. 41, p. 12582. doi 10.1016/j.ijhydene.2016.06.011CrossRefGoogle Scholar
  30. 30.
    Creason, S.C., Hayes, J.W., and Smith, D.E., Fourier transform faradaic admittance measurements III. Comparison of measurement efficiency for various test signal waveforms, J. Electroanal. Chem., 1973, vol. 47, p. 9. doi 10.1016/S0022-0728(73)80343-2CrossRefGoogle Scholar
  31. 31.
    Popkirov, G.S. and Schindler, R.N., The perturbation signal for fast Fourier transform electrochemical impedance spectroscopy (FFT-EIS), Bulgarian Chem. Commun., 1994, vol. 27, p. 459.Google Scholar
  32. 32.
    Smith, D.E., Data-processing in electrochemistry, Anal. Chem., 1976, vol. 48, p. A517. doi 10.1021/ac60370a036CrossRefGoogle Scholar
  33. 33.
    Schwall, R.J., Bond, A.M., Loyd, R.J., Larsen, J.G., and Smith, D.E., High-speed synchronous data generation and sampler system—application to online fast Fourier-transform faradaic admittance measurements, Anal. Chem., 1977, vol. 49, p. 1797. doi 10.1021/ac50020a041CrossRefGoogle Scholar
  34. 34.
    Denisov, E., Nigmatullin, R., Evdokimov, Yu., and Timergalina, G., Lithium battery transient response as a diagnostic tool, J. Electron. Mater., 2018, vol. 47, p. 4493. doi 10.1007/s11664-018-6346-yCrossRefGoogle Scholar
  35. 35.
    Lukovtsev, V.P., Rotenberg, Z.A., Dribinskii, A.V., Maksimov, E.M., and Ur’ev, V.N., Estimating depth of discharge of lithium–thionyl chloride batteries from their impedance characteristics, Russ. J. Electrochem., 2005, vol. 41, p. 1097. doi 10.1007/s11175-005-0187-8CrossRefGoogle Scholar
  36. 36.
    Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions, Russ. J. Electrochem., vol. 51, p. 503. doi 10.1134/S1023193515060063Google Scholar
  37. 37.
    Grafov, B.M., Dobrovolskii, Yu.A., Klyuev, A.L., Ukshe, A.E., Davydov, A.D., and Astaf’ev, E.A., Median Chebyshev spectroscopy of electrochemical noise, J. Solid State Electrochem., 2017, vol. 21, p. 915. doi 10.1007/s10008-016-3395-0CrossRefGoogle Scholar
  38. 38.
    Klyuev, A.L., Davydov, A.D., Grafov, B.M., Dobrovolskii, Yu.A., Ukshe, A.E., and Astaf’ev, E.A., Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum, Russ. J. Electrochem., vol. 52, p. 1001. doi 10.1134/S1023193516100062Google Scholar
  39. 39.
    Denisov, E., Evdokimov, Yu.K., Martemianov, S., Thomas, A., and Adiutantov, N., Electrochemical noise as a diagnostic tool for PEMFC, Fuel Cells, 2017, vol. 17, p. 225. doi 10.1002/fuce.201600077CrossRefGoogle Scholar
  40. 40.
    Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise, J. Power Sources, 2017, vol. 342, p. 553. doi 10.1016/j.jpowsour.2016.12.053CrossRefGoogle Scholar
  41. 41.
    Denisov, E., Evdokimov, Yu.K., Nigmatullin, R.R., Martemianov, S., Thomas, A., and Adiutantov, N., Spectral method for PEMFC operation mode monitoring based on electrical fluctuation analysis, Sci. Iranica, 2017, vol. 24, p. 1437. doi 10.24200/sci.2017.4125CrossRefGoogle Scholar
  42. 42.
    Timashev, S.F. and Polyakov, Yu.S., Review of Flicker noise spectroscopy in electrochemistry, Fluct. Noise Lett., 2007, vol. 7, p. R15. doi 10.1142/S0219477507003829Google Scholar
  43. 43.
    Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803. doi 10.1007/s10008-015-2855-2CrossRefGoogle Scholar
  44. 44.
    E. A. Astaf’ev, Electrochemical noise measurement of polymer membrane fuel cell under load, Russ. J. Electrochem., 2018, vol. 54, p. 554. doi 10.1134/S1023193518060034Google Scholar
  45. 45.
    Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Statistical short-time analysis of electrochemical noise generated within a proton exchange membrane fuel cell, J. Solid State Electrochem., 2018, vol. 22, p. 1649. doi 10.1007/s10008-017-3848-0CrossRefGoogle Scholar
  46. 46.
    Martemianov, S., Maillard, F., Thomas, A., Lagonotte, P., and Madier, L., Noise diagnosis of commercial Li-ion batteries using high-order moments, Russ. J. Electrochem., 2016, vol. 52, p. 1122. doi 10.1134/S1023193516120089CrossRefGoogle Scholar
  47. 47.
    Al-Mazeedi, H.A.A., and Cottis, R.A., A practical evaluation of electrochemical noise parameters as indicators of corrosion type, Electrochim. Acta, 2004, vol. 49, p. 2787. doi 10.1016/j.electacta.2004.01.040CrossRefGoogle Scholar
  48. 48.
    Sanchez-Amaya, J.M., Cottis, R.A., and Botana, F.J., Shot noise and statistical parameters for the estimation of corrosion mechanisms, Corros. Sci., 2005, vol. 47, p. 3280. doi 10.1016/j.corsci.2005.05.047CrossRefGoogle Scholar
  49. 49.
    Kulikovsky, A.A., Scharmann, H., and Wippermann, K., On the origin of voltage oscillations of a polymer electrolyte fuel cell in galvanostatic regime, Electrochem. Commun., 2004, vol. 6, p. 729. doi 10.1016/j.elecom. 2004.05.015CrossRefGoogle Scholar
  50. 50.
    Hassibi, A., Navid, R., Dutton, R.W., and Lee, T.H., Comprehensive study of noise processes in electrode electrolyte interfaces, J. Appl. Phys., 2004, vol. 96, p. 1074. doi 10.1063/1.1755429CrossRefGoogle Scholar
  51. 51.
    Kanevskii, L.S., Grafov, B.M., and Astaf’ev, M.G., Dynamics of electrochemical noise of the lithium electrode in aprotic organic electrolytes, Russ. J. Electrochem., 2005, vol. 41, p. 1091. doi 10.1007/s11175-005-0186-9CrossRefGoogle Scholar
  52. 52.
    Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., Measurement of electrochemical noise of a Li/MnO2 primary lithium battery, J. Solid State Electrochem., 2018, doi 10.1007/s10008-018-4074-0CrossRefGoogle Scholar
  53. 53.
    Kanevskii, L.S., Special features of discharge characteristics of different types of lithium-thionyl chloride cells and the problem of their diagnostics, Russ. J. Electrochem., 2009, vol. 45, p. 835. doi 10.1134/S1023193509080011CrossRefGoogle Scholar
  54. 54.
    Martem’yanov, S.A. and Grafov, B.M., Electrochemical AC circuits arising in the presence of hydrodynamic velocity fluctuations of the electrolyte, Sov. Electrochem., 1988, vol. 24, p. 94.Google Scholar
  55. 55.
    Martem’yanov, S.A. and Grafov, B.M., Hydroelectrochemical impedance associated with turbulent fluctuations in the electrolyte solutions, Sov. Electrochem., 1988, vol. 24, p. 344.Google Scholar
  56. 56.
    Martem’yanov, S.A. and Grafov, B.M., Hydroelectrochemical impedance of an electrode process comprising two adsorption steps, Sov. Electrochem., 1988, vol. 24, p. 1052.Google Scholar
  57. 57.
    Grafov, B.M., Martemyanov, S.A., and Nekrasov, L.N., Turbulent Diffusion Layer in Electrochemical Systems (in Russian), Moscow: Nauka publ., 1990, 295 p.Google Scholar
  58. 58.
    Danaee, I., Kinetics and mechanism of palladium electrodeposition on graphite electrode by impedance and noise measurements, J. Electroanal. Chem., 2011, vol. 662, p. 415. doi 10.1016/j.jelechem.2011.09.012Google Scholar
  59. 59.
    Danaee, I., Theoretical and experimental studies of layer by layer nucleation and growth of palladium on stainless steel 316L, Chemija, 2013, vol. 24, p. 128.Google Scholar
  60. 60.
    Fernández, D., Maurer, P., Martine, M., Coey, J.M.D., and Mobius, M.E., Bubble formation at a gas-evolving microelectrode, Langmuir, 2014, vol. 30, p. 13065. doi 10.1021/la500234rCrossRefGoogle Scholar
  61. 61.
    Huet, F., Musiani, M., and Nogueira, R.P., Electrochemical noise analysis of O2 evolution on PbO2 and PbO2-matrix composites containing Co or Ru oxides, Electrochim. Acta, 2003, vol. 48, p. 3981. doi 10.1016/S0013-4686(03)00524-3CrossRefGoogle Scholar
  62. 62.
    Tyagai, V.A., Faradaic noise of complex electrochemical reactions, Electrochim. Acta, 1971, vol. 16, p. 1647. doi 10.1016/0013-4686(71)85075-2CrossRefGoogle Scholar
  63. 63.
    Meszaros, G., Szenes, I., and Lengyel B., Measurement of charge transfer noise, Electrochem. Commun., 2004, vol. 6, p. 1185. doi 10.1016/j.elecom.2004.09.017CrossRefGoogle Scholar
  64. 64.
    Cottis, R.A., Al-Awadhi, M.A.A., Al-Mazeedi, H., and Turgoose, S., Measures for the detection of localized corrosion with electrochemical noise, Electrochim. Acta, 2001, vol. 46, p. 3665. doi 10.1016/S0013-4686(01)00645-4CrossRefGoogle Scholar
  65. 65.
    Xiao, H. and Mansfeld, F., Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis, J. Electrochem. Soc., 1994, vol. 141, p. 2332. doi 10.1149/1.2055121CrossRefGoogle Scholar
  66. 66.
    Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., The model of electrochemical noise of a hydrogen-air fuel cell, J. Electrochem. Soc., 2018, vol. 165, p. F604. doi 10.1149/2.0251809jesGoogle Scholar
  67. 67.
    Astafev, E.A., Electrochemical noise measurement of a Li/SOCl2 primary battery, J. Solid State Electrochem., 2018. doi 10.1007/s10008-018-4067-zGoogle Scholar
  68. 68.
    Tyagai, V.A. and Luk’yanchikova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya (in Russian), 1967, vol. 3, p. 316.Google Scholar
  69. 69.
    Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya (in Russian), 1974, vol. 10, p. 3.Google Scholar
  70. 70.
    Schottky, W., On spontaneous current fluctuations in different electricity conductors (in German), Ann. Phys., 1918, vol. 362, p. 541. doi 10.1002/andp.19183622304. 10.1002/andp.19183622304CrossRefGoogle Scholar
  71. 71.
    Bertocci, U. and Huet, F., Noise analysis applied to electrochemical systems, Corrosion, 1995, vol. 51, p. 131. doi 10.5006/1.3293585CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations