Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 825–834 | Cite as

Comparative Study of Graphite and the Products of Its Electrochemical Exfoliation

  • A. G. Krivenko
  • R. A. ManzhosEmail author
  • N. S. Komarova
  • A. S. Kotkin
  • E. N. Kabachkov
  • Yu. M. Shul’ga


A comparative study of electrochemical characteristics of graphite electrodes and precipitates of suspensions produced by the graphite exfoliation is carried out. The graphite is exfoliated into low-layered graphene structures formed in the course of electrochemical impact during the applying of alternating potential to the electrodes. The low-layered graphene structures and graphite electrodes were characterized using numerous procedures from optical, electron, and scanning microscopy, UV-vis-, IR-, Raman, and XPSspectroscopy, and thermogravimetric analysis. The rate constant of electron transfer at the initial graphite for [Ru(NH3)6]2+/3+ and [Fe(CN)6]4–/3– redox pairs is shown to approach the value measured both for the lowlayered graphene structures obtained during the graphite electrode exfoliation and for highly oriented carbon nanowalls and single-walled nanotubes measured earlier. At the same time, the Fe2+/3+ redox-process occurring at the graphite electrode is faster than at the low-layered graphene structures and much faster (by 2–3 orders of magnitude) than at the nanowalls. It is concluded that no significant acceleration of the electron transfer generally occurs when passing from the graphite electrodes to the low-layered graphene structures.


graphite exfoliation electron transfer redox-reactions low-layered graphene structures [Ru(NH3)6]2+/3+ [Fe(CN)6]4–/3– Fe2+/3+ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kannan, M.V. and Kumar, G.G., Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications, Biosensors Bioelectronics, 2016, vol. 77, p. 1208.CrossRefGoogle Scholar
  2. 2.
    Chua, C.K. and Pumera, M., Carbocatalysis: The State of “Metal-Free” Catalysis, Chemistry-European J., 2015, vol. 21, p. 12550.CrossRefGoogle Scholar
  3. 3.
    Kamiya, K., Hashimoto, K., and Nakanishi, S., Graphene Defects as Active Catalytic Sites that are Superior to Platinum Catalysts in Electrochemical Nitrate Reduction, ChemElectroChem., 2014, vol. 1, p. 858.CrossRefGoogle Scholar
  4. 4.
    Shinde, D.B., Brenker, J., Easton, C.D., Tabor, R.F., Neild, A., and Majumder, M., Shear Assisted Electrochemical Exfoliation of Graphite to Graphene, Langmuir, vol. 32, p. 3552.Google Scholar
  5. 5.
    Strong, V., Dubin, S., El-Kady, M.F., Lech, A., Wang, Y., Weiller, B.H., and Kaner, R.B., Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices, ACS NANO, 2012, vol. 6, p. 1395.CrossRefGoogle Scholar
  6. 6.
    Shulga, Y.M., Baskakov, S.A., Knerelman, E.I., Daidova, G.I., Badamshina, E.R., Shulga, N.Yu., Skryleva, E.A., Agapov, A.L., Voylov, D.N., Sokolov, A.P., and Martynenko, V.M., Carbon nanomaterial produced by microwave exfoliation of graphite oxide: new insights, RSC Advances, 2014, vol. 4, p. 587.CrossRefGoogle Scholar
  7. 7.
    Disa, N. Md., Bakar, S.A., Alfarisa, S., Mohamed, A., Isa, I. Md., Kamari, A., Hashim, N., and Mahmood, M.R., A Review: Synthesis Methods of Graphene and Its Application in Supercapacitor Devices, Advantage Mater. Res., 2015, vol. 1109, p. 40.CrossRefGoogle Scholar
  8. 8.
    Simonet, J., Electrochemical exfoliation in real time of natural graphite deposited onto glassy carbon. Doping and modifying carbons through ultra-thin graphite layers, Electrochem. Commun., 2014, vol. 48, p. 142.CrossRefGoogle Scholar
  9. 9.
    Jouikov, V. and Simonet, J., Graphene: Large Scale Chemical Functionalization By Cathodic Means, Electrochem. Commun., 2014, vol. 46, p. 132.CrossRefGoogle Scholar
  10. 10.
    Alanyalıoglu, M., Segura, J.J., Oro-Sole, J., and Casan-Pastor, N., The synthesis of graphene sheets with controlled thickness and order using surfactantassisted electrochemical processes, Carbon, 2012, vol. 50, p. 142.CrossRefGoogle Scholar
  11. 11.
    Zeng, F., Sun, Z., Sang, X., Diamond, D., Lau, K.T., Liu, X., and Su, D.S., In Situ One-Step Electrochemical Preparation of Graphene Oxide Nanosheet-Modified Electrodes for Biosensors, ChemSusChem, 2011, vol. 4, p. 1587.CrossRefGoogle Scholar
  12. 12.
    Rao, K.S., Senthilnathan, J., Liu, Y.-F., and Yoshimura, M., Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite, Sci. Reports, 2014, vol. 4, p. 4237.CrossRefGoogle Scholar
  13. 13.
    Ejigu, A., Kinloch, I.A., and Dryfe, R.A.W., Single Stage Simultaneous Electrochemical Exfoliation and Functionalization of Graphene, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 710.CrossRefGoogle Scholar
  14. 14.
    Yen, P-J., Ting, C-C., Chiu, Y.-C., Tseng, T.-Y., Hsu, Y.-J., Wua, W.-W., and Wei, K.-H., Facile production of graphene nanosheets comprising nitrogendoping through in situ cathodic plasma formation during electrochemical exfoliation, J. Mater. Chem. C, 2017, vol. 5, p. 2597.CrossRefGoogle Scholar
  15. 15.
    Hummers, W.S. and Offeman, R.E., Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.CrossRefGoogle Scholar
  16. 16.
    Javed, S.I. and Hussain, Z., Covalently Functionalized Graphene Oxideq—Characterization and Its Electrochemical Performance, Int. J. Electrochem. Sci., 2015, vol. 10, p. 9475.Google Scholar
  17. 17.
    Wu, F., Huang, T., Hu, Y.J., Yang, X., Ouyang, Y.J., and Xie, Q.J., Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups, Microchim. Acta, 2016, vol. 183, p. 2539.CrossRefGoogle Scholar
  18. 18.
    Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., and Müllen, K., Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts, J. Am. Chem. Soc., 2014. vol. 136, p. 6083.Google Scholar
  19. 19.
    Sahoo, S.K. and Mallik, A., Simple, Fast and Cost-E® ective Electrochemical Synthesis of Few Layer Graphene Nanosheets, NANO, 2015, vol. 10, Article Number 1550019.Google Scholar
  20. 20.
    Paredes, J.I., Villar-Rodil, S., Solıs-Fernandez, P., Martınez-Alonso, A., and Tascon, J.M.D., Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide, Langmuir, 2009, vol. 25, p. 5957.CrossRefGoogle Scholar
  21. 21.
    Munuera, J.M., Paredes, J.I., Villar-Rodil, S., Ayán-Varela, M., Martínez-Alonso, A., and Tascón, J.M.D., Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide–free graphene flakes, Nanoscale, 2016, vol. 8, p. 2982.Google Scholar
  22. 22.
    Shirley, D.A., Hyperfine Interactions and ESCA Data, Phys. Scripta., 1975, vol. 11, p. 117.CrossRefGoogle Scholar
  23. 23.
    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 2007, vol. 45, p. 1558.CrossRefGoogle Scholar
  24. 24.
    Shulga, Y.M., Baskakov, S.A., Knerelman, E.I., Davidova, G.I., Badamshina, E.R., Shulga, N.Yu., Skryleva, E.A., Agapov, A.L., Voylov, D.N., Sokolov, A.P., and Martynenko, V.M., Carbon nanomaterial produced by microwave exfoliation of graphite oxide: new insights, RSC Adv., 2014, vol. 4, p. 587.CrossRefGoogle Scholar
  25. 25.
    Brownson, D.A.C., Foster, C.W., and Banks, C.E., The electrochemical performance of graphene modified electrodes: An analytical perspective, Analyst., 2012, vol. 137, p. 1815.CrossRefGoogle Scholar
  26. 26.
    Beidaghi, M., Wang, Z., Gu, L., and Wang, C., Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes, J. Solid State Electrochem., 2012, vol. 16, p. 3341.CrossRefGoogle Scholar
  27. 27.
    Carter, R., Oakes, L., Cohn, A., Holzgrafe, J., Zarick, H.F., Chatterjee, S., Bardhan, R., and Pint, C.L., Solution Assembled Single Walled Carbon Nanotube Foams; Superior Performance in Supercapacitors, Lithium Ion, and Lithium Air Batteries, J. Phys. Chem. C, 2014, vol. 118, p. 20137.Google Scholar
  28. 28.
    Komarova, N.S., Krivenko, A.G., Ryabenko, A.G., and Naumkin, A.V., Active forms of oxygen as agents for electrochemical functionalization of SWCNTs, Carbon, 2013, vol. 53, p. 188.CrossRefGoogle Scholar
  29. 29.
    Yamada, Y., Kimizuka, O., Tanaike, O., Machida, K., Suematsu, S., Tamamitsu, K., Saeki, S., Yoshizawa, N., Yamashita, J., Don, F., Hata, K., and Hatori, H., Capacitor Properties and Pore Structure of Single-and Double-Walled Carbon Nanotubes, Electrochem. Solid-State Lett., 2009, vol. 12, K14–K16.Google Scholar
  30. 30.
    Krivenko, A.G., Komarova, N.S., Stenina, E.V., Sviridova, L.N., Mironovich, K.V., Shul’ga, Yu.M., Manzhos, P.A., Doronin, S.V., and Krivchenko, V.A., Electrochemical Modification of Electrodes Based on Highly Oriented Carbon Nanowalls, Russ. J. Electrochem., 2015, vol. 51, p. 963.CrossRefGoogle Scholar
  31. 31.
    Valota, A.T., Kinloch, I.A., Novoselov, K.S., Casiraghi, C., Eckmann, A., Hill, E.W., and Dryfe, R.A.W., Electrochemical Behavior of Monolayer and Bilayer Graphene, ACS NANO, 2012, vol. 5, p. 8809.CrossRefGoogle Scholar
  32. 32.
    Oldham, K.B. and Myland, J.C., Modelling cyclic voltammetry without digital simulation, Electrochim. Acta, 2011, vol. 56, p. 10612.CrossRefGoogle Scholar
  33. 33.
    Komarova, N.S., Krivenko, A.G., Stenina, E.V., Sviridova, L.N., Mironovich, K.V., Shulga, Y.M., and Krivchenko, V.A., Enhancement of the Carbon Nanowall Film Capacitance. Electron Transfer Kinetics on Functionalized Surfaces, Langmuir, 2015, vol. 31, p. 7129.CrossRefGoogle Scholar
  34. 34.
    Komarova, N.S., Krivenko, A.G., Ryabenko, A.G., Naumkin, A.V., Maslakov, K.I., and Savilov, S.V., Functionalization and defunctionalization of single walled carbon nanotubes: Electrochemical and morphologic consequences, J. Electroanal. Chem., 2015, vol. 738, p. 27.CrossRefGoogle Scholar
  35. 35.
    Ambrosi, A. and Pumera, M., Electrochemistry at CVD Grown Multilayer Graphene Transferred onto Flexible Substrates, J. Phys. Chem. C, 2013, vol. 117, p. 2053.CrossRefGoogle Scholar
  36. 36.
    Hong, C., Wong, A., Ambrosi, A., and Pumera, M., Thermally reduced graphenes exhibiting a close relationship to amorphous carbon, Nanoscale, 2012, vol. 4, p. 4972.CrossRefGoogle Scholar
  37. 37.
    Punckt, C., Pope, M.A., and Aksay, I.A., High Selectivity of Porous Graphene Electrodes Solely Due to Transport and Pore Depletion Effects, J. Phys. Chem. C, 2014, vol. 118, p. 22635.CrossRefGoogle Scholar
  38. 38.
    Cai, M., Outlaw, R.A., Butler, S.M., and Miller, J.R., A high density of vertically-oriented graphenes for use in electric double layer capacitors, Carbon, 2012, vol. 50, p. 5481.CrossRefGoogle Scholar
  39. 39.
    Zhang, F., Lu, L., Yang, M., Gao, C., and Wang, Z., Electrochemistry of Graphene Flake Electrodes: Edge and Basal Plane Effect for Biosensing, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10172.CrossRefGoogle Scholar
  40. 40.
    Brownson, D.A.C., Varey, S.A., Hussain, F., Haigh, S.J., and Banks, C.E., Electrochemical properties of CVD grown pristine graphene: monolayer-vs. quasigraphene, Nanoscale, 2014, vol. 6, p. 1607.CrossRefGoogle Scholar
  41. 41.
    Regisser, F., Lavoie, M.-A., Champagne, G.Y., and Belanger, D., Randomly oriented graphite electrode. Part 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode, J. Electroanal. Chem., 1996, vol. 415, p. 47.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. G. Krivenko
    • 1
  • R. A. Manzhos
    • 1
    Email author
  • N. S. Komarova
    • 1
  • A. S. Kotkin
    • 1
  • E. N. Kabachkov
    • 1
  • Yu. M. Shul’ga
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations