Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 251–257 | Cite as

Anode with the Active Layer for Electrosynthesizing Ozone in a System with Solid Polymer Electrolyte

  • S. V. Akel’kina
  • A. S. Pushkarev
  • S. A. Grigoriev
  • I. V. Pushkareva
  • V. N. Fateev
Article
  • 4 Downloads

Abstract

The synthesis of catalytic coatings on porous titanium electrodes by the method of magnetron sputtering is considered. The content of dopant ions Fe3+ and F is optimized as regards the activity and stability of the PbO2 catalyst in the reaction of ozone electrogeneration as well as the current efficiency with respect to ozone. It is shown that the best characteristics of the electrochemical ozone generator are observed on the PbO2 catalyst doped with Fe3+ and F ions in the amount of 3–4 and 1–2 at %, respectively.

Keywords

solid polymer electrolyte electrolysis ozone magnetron sputtering doped lead dioxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swaminathan, M., Muruganandham, M., and Sillanpaa, M., Advanced oxidation processes for wastewater treatment, Int. J. Photoenergy, 2013, Article ID683682, http://dx.doi.org/. doi 10.1155/2013/683682Google Scholar
  2. 2.
    Grigor'ev, S.A., Pushkarev, A.S., Pushkareva, I.V., and Bessarabov, D.G., Electrochemical treatment of water in a system with solid polymer electrolyte, Voda: Khim. Ekologiya, 2016, no. 3, p. 85.Google Scholar
  3. 3.
    Pushkarev, A.S., Pushkareva, I.V., and Grigoriev, S.A., Electrochemical generation of ozone in a system with a solid polymer electrolyte, Russ. J. Appl. Chem., 2016, vol. 89, no. 7, p. 1054.CrossRefGoogle Scholar
  4. 4.
    Grimm, J., Bessarabov, D., and Sanderson, R., Review of electro-assisted methods for water purification, Desalination, 1998, vol. 115, p. 285.CrossRefGoogle Scholar
  5. 5.
    Bicknell, D.L. and Jain, R.K., Ozone disinfection of drinking water—technology transfer and policy issues, Environ. Eng. Policy, 2002, vol. 3, p. 55.CrossRefGoogle Scholar
  6. 6.
    Grigor’ev, S.A., Grigor’ev, A.S., Kuleshov, N.V., Fateev, V.N., and Kuleshov, V.N., Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems, Therm. Eng., 2015, vol. 62, no. 2. p. 81.CrossRefGoogle Scholar
  7. 7.
    Fateev, V.N., Grigor’ev, S.A., Maruseva, I.V., Baranov, I.E., and Dzhus’, K.A., Membrane electrolysis for renewable energetics, Sbornik materialov III Mezhdunarodnoi nauchno-prakticheskoi konf. “Teoriya i praktika sovremennykh elektrokhimicheskikh proizvodstv”, (Collection of Papers of the III International Scientific-Practical Conference “Theory and Practice of Modern Electrochemical Industries”), St. Petersburg, 2014, p. 5.Google Scholar
  8. 8.
    Bessarabov, D.G., Electrochemical generation of highconcentration ozone for water treatment, The WISA 2000 Biennial Conference, 2000, Sun City, South Africa.Google Scholar
  9. 9.
    Wang, J., Li, X., Guo, L., and Luo, X., Effect of surface morphology of lead dioxide particles on their ozone generating performance, Appl. Surf. Sci., 2008, vol. 254, p. 6666.CrossRefGoogle Scholar
  10. 10.
    Amadelli, R. and Velichenko, A.B., Lead dioxide electrodes for high potential anodic processes, J. Serb. Chem. Soc., 2001, vol. 66, p. 835.Google Scholar
  11. 11.
    Amadelli, R., Armelao, L., Velichenko, A.B., Nikolenko, N.V., Girenko, D.V., Kovalyov, S.V., and Danilov, F.I., Oxygen and ozone evolution at fluoride modified lead dioxide electrodes, Electrochim. Acta, 1999, vol. 45, p. 713.CrossRefGoogle Scholar
  12. 12.
    Andrade, L.S, Ruotolo, L.A.M., Rocha-Filho, R.C., Bocchi, N., Biaggio, S.R., Iniesta, J., Vicente Garcia-Garcia, V., and Montiel, V., On the performance of Fe and Fe, F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater, Chemosphere, 2007, vol. 66, p. 2035.CrossRefGoogle Scholar
  13. 13.
    Tong, S., Zhang, T., and Ma, C., Oxygen evolution behavior of PTFE–F––PbO2 electrode in H2SO4 solution, Chin. J. Chem. Eng., 2008, vol. 16, p. 885.CrossRefGoogle Scholar
  14. 14.
    Simond, O. and Comninellis, Ch., Anodic oxidation of organics on Ti/IrO2 anodes using Nafion® as electrolyte, Electrochim. Acta, 1997, vol. 42. p. 2013.CrossRefGoogle Scholar
  15. 15.
    Rajab, M., Heim, C., Letzel, T., Drewes, J.E., and Helmreich, B., Electrochemical disinfection using boron-doped diamond electrode—The synergetic effects of in situ ozone and free chlorine generation, Chemosphere, 2015, vol. 121, p. 47.CrossRefGoogle Scholar
  16. 16.
    Kraft, A., Stadelmann, M., Wunsche, M., and Blaschke, M., Electrochemical destruction of organic substances in deionized water using diamond anodes and a solid polymer electrolyte, Electrochem. Commun., 2006, vol. 8, p. 155.CrossRefGoogle Scholar
  17. 17.
    Honda, Y., Ivandini, T.A., Watanabe, T., Murata, K., and Einaga, Y., An electrolyte-free system for ozone generation using heavily boron-doped diamond electrodes, Diamond Relat. Mater., 2013, p. 40, p. 7.CrossRefGoogle Scholar
  18. 18.
    Awad, M.I., Sata, S., Kaneda, K., Ikematsu, M., Okajima, T., and Ohsaka, T., Ozone electrogeneration at a high current efficiency using a tantalum oxide–platinum composite electrode, Electrochem. Commun., 2006, vol. 8, p. 1263.CrossRefGoogle Scholar
  19. 19.
    Kitsuka, K., Kaneda, K., Ikematsu, M., Iseki, M., Mushiake, K., and Ohsaka, T., Ex situ and in situ characterization studies of spin-coated TiO2 film electrodes for the electrochemical ozone production process, Electrochim. Acta, 2009, vol. 55, p. 31.CrossRefGoogle Scholar
  20. 20.
    Mohammad, A.M., Kitsuka, K., Abdullah, A.M., Awad, M.I., Okajima, T., Kaneda, K., Ikematsu, M., and Ohsaka, T., Development of spin-coated Si/TiOx/Pt/TiOx electrodes for the electrochemical ozone production, Appl. Surf. Sci., 2009, vol. 255, p. 8458.CrossRefGoogle Scholar
  21. 21.
    Zakaria, K. and Christensen, P.A., The use of Ni/Sb–SnO2-based membrane electrode assembly for electrochemical generation of ozone and the decolourisation of Reactive Blue 50 dye solutions, Electrochim. Acta, 2014, vol. 135, p. 11.CrossRefGoogle Scholar
  22. 22.
    Fateev V.N., Akel’kina, S.V., Velichenko, A.B., and Girenko, D.V., Formation of oxygen and ozone in the system with a solid polymer electrolyte: The influence of modifying PbO2, Russ. J. Electrochem., 1998, vol. 34, p. 815.Google Scholar
  23. 23.
    Velichenko, A.B., Amadelli, R., Zucchini, G.L., Girenko, D.V., and Danilov, F.I., Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts, Electrochim. Acta, 2000, vol. 45, p. 4341.CrossRefGoogle Scholar
  24. 24.
    Shmychkova, O., Luk’yanenko, T., and Velichenko, A., Bismuth doped PbO2 coatings: morphology and electrocatalytic properties, Univers. J. Chem., 2013, vol. 1, p. 30. http://www.hrpub.org/journals/jour_archive.php?id=64Google Scholar
  25. 25.
    Wang, J. and Jing, X., Study on the effect of lead dioxide particles on the anodic electrode performance for ozone generation, Int. J. Electrochem., 2006, vol. 74. p. 539.CrossRefGoogle Scholar
  26. 26.
    Velichenko, A.B., Girenko, D.V., Kovalyov, S.V., Gnatenko, A.N., Amadelli, R., and Danilov, F.I., Lead dioxide electrodeposition and its application: influence of fluoride and iron ions, J. Electroanal. Chem., 1998, vol. 454, p. 203.CrossRefGoogle Scholar
  27. 27.
    Amadelli, R., Maldotti, A., Molinari, A., Danilov, F.I., and Velichenko, A.B., Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at b-PbO2 anodes in acid media, J. Electroanal. Chem., 2002, vol. 534, p. 1.CrossRefGoogle Scholar
  28. 28.
    Velichenko, A.B., Girenko, D.V., Nikolenko, N.V., Amadelli, R., Baranova, E.A., and Danilov, F.I., Oxygen evolution on lead dioxide modified with fluorine and iron, Russ. J. Electrochem., 2000, vol. 36, p. 1216.CrossRefGoogle Scholar
  29. 29.
    Hyde, M.E., Jacobs, R.M.J., and Compton, R.G., An AFM study of the correlation of lead dioxide electrocatalytic activity with observed morphology, J. Phys. Chem. B, 2004, vol. 108, p. 6381.CrossRefGoogle Scholar
  30. 30.
    Monahov, B. and Pavlov, D., Hydrated structures in the anodic layer formed on lead electrodes in H2SO4 solution, J. Appl. Electrochem., 1993, vol. 23, p. 1244.CrossRefGoogle Scholar
  31. 31.
    Babak, A.A., Fateev, V.N., Amadelli, R., and Potapova, G.F., Ozone electrosynthesis in an electrolyzer with solid polymer electrolyte, Russ. J. Electrochem., 1994, vol. 30, p. 739.Google Scholar
  32. 32.
    Feng, J., Johnson, D.C., Lowery, S.N., and Carey, J.J., Electrocatalysis of anodic oxygen-transfer reactions evolution of ozone, J. Electrochem. Soc., 1994, vol. 141, p. 2708.CrossRefGoogle Scholar
  33. 33.
    Grigoriev, S.A., Fedotov, A.A., Martemianov, S.A., and Fateev, V.N., Synthesis of nanostructural electrocatalytic materials on various carbon substrates by ion plasma sputtering of platinum metals, Russ. J. Electrochem., 2014, vol. 50, p. 638.CrossRefGoogle Scholar
  34. 34.
    Fedotov, A.A., Grigor’ev, S.A., Glukhov, A.S., Dzhus’, K.A., and Fateev, V.N., Synthesis of nanostructured electrocatalysts based on magnetron ion sputtering, Kinet. Catal., 2012, vol. 53, p. 753.]CrossRefGoogle Scholar
  35. 35.
    Sputtering of Solids by Ion Bombardment, Berish, R. Ed., Berlin: Springer, 1982; translated into Russian.Google Scholar
  36. 36.
    Gel'man, N.E., Terent’eva, E.A., and Shanina, T.M., Metody kolichestvennogo organicheskogo elementnogo mikroanaliza (Methods of Quantitative Organic Elementary Microanalysis), Moscow: Khimija, 1987.Google Scholar
  37. 37.
    Grigoriev, S.A., Fateev, V.N., Lutikova, E.K., Grigoriev, A.S., Bessarabov, D.G., Wei, X., and Ge, J., CNF-supported platinum electrocatalysts synthesized using plasma-assisted sputtering in pulse conditions for the application in a high-temperature PEM fuel cell, Int. J. Electrochem. Sci., 2016, vol. 11, p. 2085.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Akel’kina
    • 1
  • A. S. Pushkarev
    • 1
    • 2
  • S. A. Grigoriev
    • 2
  • I. V. Pushkareva
    • 1
    • 2
  • V. N. Fateev
    • 1
  1. 1.National Research Center “Kurchatov Institute,”MoscowRussia
  2. 2.National Research University “Moscow Power Engineering Institute,”MoscowRussia

Personalised recommendations