Advertisement

Russian Journal of Genetics

, Volume 55, Issue 11, pp 1360–1374 | Cite as

Genome-Wide Association Study of Powdery Mildew Resistance in Russian Spring Wheat (T. aestivum L.) Varieties

  • I. N. LeonovaEmail author
PLANT GENETICS
  • 21 Downloads

Abstract

Powdery mildew caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt) is an econo-mically important disease of common wheat T. aestivum L. One of the most effective and environmentally important ways of protection of wheat against Bgt is cultivation of the varieties with genetic resistance. The aim of this work was to study the genetic diversity of Russian spring wheat varieties for the powdery mildew resistance loci. Phytopathological evaluation of 97 wheat varieties showed that no more than 10% of the varieties have low level of susceptibility to the Bgt population specific to the Western Siberian region. Association mapping carried out on the basis of SNP genotyping and phytopathological testing during three environmental seasons identified eight loci in chromosomes 1AL, 1DS, 2BL, 5AS, 5DS, 6AL, 6DL, and 7AL. A high impact to the phenotypic manifestation of the trait was established for genetic factors localized in chromosomes 5AS, 6AL, and 6DL. The long arm of chromosome 6D contains the gene Pm6Ai=2, which was introduced from wheatgrass Thinopyrum intermedium and provides effective protection against the powdery mildew pathogen. On the basis of comparative analysis of the chromosomal localization of the known Pm resistance genes and loci mapped in this work, it was assumed that QTLs in chromosomes 1DS, 5AS, and 6AL are novel, not previously described resistance loci. The obtained results can be used in breeding programs for selection of target loci and for development of molecular markers specific to Bgt resistance loci.

Keywords:

common wheat powdery mildew Pm genes association mapping GWAS Bgt 

Notes

FUNDING

This work was supported by the grant of the Russian Science Foundation 16-16-00011-P. The collection of spring wheat varieties was reproduced and cultivated within the framework of the project of the Ministry of Education and Science of the Russian Federation no. 0324-2019-0039.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any research using animals as an object. This article does not contain any research involving people as an object.

REFERENCES

  1. 1.
    Cunfer, B.M., Powdery mildew, in Bread Wheat: Improvement and Production, Italy: FAO, 2002, pp. 317—330.Google Scholar
  2. 2.
    Kiseleva, M.I., Kolomiets, T.M., Pakholkova, E.V., et al., The differentiation of winter wheat (Triticum aestivum L.) cultivars for resistance to the most harmful fungal pathogens, Agricultural Biol., 2016, vol. 51, no. 3, pp. 299—309.  https://doi.org/10.15389/agrobiology.2016.3.299eng CrossRefGoogle Scholar
  3. 3.
    Sanin, S.S. and Nazarova, A.N., Phytosanitary situation in wheat fields in the Russian Federation (1991—2008), Zashch. Karantin Rast., 2010, no. 2, pp. 70—78.Google Scholar
  4. 4.
    Teplyakova, O.I. and Teplyakov, V.I., Local monitoring of spring wheat leaf diseases in Siberia, Zashch. Karantin Rast., 2011, no. 6, pp. 39—41.Google Scholar
  5. 5.
    McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat, in The 12th International Wheat Genetics Symposium, Yokohama, 2013, suppl., pp. 2014—2017. http://www.shigen.nig.ac.jp/wheat/komugi/genes/.Google Scholar
  6. 6.
    Huang, X.O. and Röder, M.S., Molecular mapping of powdery mildew resistance genes in wheat: a review, Euphytica, 2004, vol. 137, pp. 203—223.  https://doi.org/10.1023/B:EUPH.0000041576.74566.d7 CrossRefGoogle Scholar
  7. 7.
    Mohler, V., Hsam, S.L.K., Zeller, F.J., and Wenzel, G., An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat, Plant Breed., 2001, vol. 120, pp. 448—450.  https://doi.org/10.1046/j.1439-0523.2001.00622.x CrossRefGoogle Scholar
  8. 8.
    Spielmeyer, W., McIntosh, R.A., Kolmer, J., and Lagudah, E., Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust co-segregate at a locus on the short arm of chromosome 7D of wheat, Theor. Appl. Genet., 2005, vol. 111, pp. 731—735.  https://doi.org/10.1007/s00122-005-2058-9 CrossRefPubMedGoogle Scholar
  9. 9.
    Lillemo, M., Asalf, B., Singh, R.P., et al., The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar, Theor. Appl. Genet., 2005, vol. 116, pp. 1155—1166.  https://doi.org/10.1007/s00122-008-0743-1 CrossRefGoogle Scholar
  10. 10.
    Li, Z., Lan, C., He, Z., et al., Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat, Crop Sci., 2014, vol. 54, pp. 1907—1925.  https://doi.org/10.2135/cropsci2014.02.0162 CrossRefGoogle Scholar
  11. 11.
    Alam, Md., Xue, F., Wang, C., and Ji, W., Powdery mildew resistance genes in wheat: identification and genetic analysis, J. Mol. Biol. Res., 2011, vol. 1, pp. 20—39.  https://doi.org/10.5538/jmbr.v1n1p20 CrossRefGoogle Scholar
  12. 12.
    Shah, L., Rehman, S., Ali, A., et al., Genes responsible for powdery mildew resistance and improvement in wheat using molecular marker-assisted selection, J. Plant Dis. Protect., 2018, vol. 125, pp. 145—158.  https://doi.org/10.1007/s41348-017-0132-6 CrossRefGoogle Scholar
  13. 13.
    Wang, S., Wong, D., Forrest, K., et al., Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array, Plant Biotechnol. J., 2014, vol. 12, pp. 787—796.  https://doi.org/10.1111/pbi.12183 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maccaferri, M., Ricci, A., Salvi, S., et al., A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding, Plant Biotechnol. J., 2015, vol. 13, pp. 648—663.  https://doi.org/10.1111/pbi.12288 CrossRefPubMedGoogle Scholar
  15. 15.
    Gerard, G.S., Börner, A., Lohwasser, U., et al., Genome-wide association mapping of genetic factors controlling Septoria tritici blotch resistance and their association with plant height and heading date in wheat, Euphytica, 2017, vol. 213, pp. 27—41.  https://doi.org/10.1007/s10681-016-1920-1 CrossRefGoogle Scholar
  16. 16.
    Kankwatsa, P., Singh, D., Thomson, P.C., et al., Characterization and genome-wide association mapping of resistance to leaf rust, stem rust and stripe rust in a geographically diverse collection of spring wheat landraces, Mol. Breed., 2017, vol. 37, pp. 113—136.  https://doi.org/10.1007/s11032-017-0707-8 CrossRefGoogle Scholar
  17. 17.
    Tessmann, E.W. and Van Sanford, D.A., GWAS for Fusarium head blight related traits in winter wheat (Triticum aestivum L.) in an artificially warmed treatment, Agronomy, 2018, vol. 8, article no. 68.  https://doi.org/10.3390/agronomy8050068 CrossRefGoogle Scholar
  18. 18.
    Liu, N., Bai, G., Lin, M., et al., Genome-wide association analysis of powdery mildew resistance in U.S. winter wheat, Sci. Rep., 2017, vol. 7, article no. 11743.  https://doi.org/10.1038/s41598-017-11230-z CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ren, Y., Hou, W., Lan, C., et al., QTL analysis and nested association mapping for adult plant resistance to powdery mildew in two bread wheat populations, Front. Plant Sci., 2017, vol. 8, article no. 1212.  https://doi.org/10.3389/fpls.2017.01212 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Saari, E.E. and Prescott, J.M., A scale for appraising the foliar intensity of wheat diseases, Plant Dis. Rep., 1975, vol. 59, pp. 377—380.Google Scholar
  21. 21.
    Leonova, I.N., Dobrovol’skaya, O.B., Kaminskaya, L.N., et al., Molecular analysis of the triticale lines with different Vrn gene systems using microsatellite markers and hybridization in situ,Russ. J. Genet., 2005, vol. 41, no. 9, pp. 1014—1020.  https://doi.org/10.1007/s11177-005-0193-7 CrossRefGoogle Scholar
  22. 22.
    Bradbury, P.J., Zhang, Z., Kroon, D.E., et al., TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics, 2007, vol. 23, pp. 2633—2635.  https://doi.org/10.1093/bioinformatics/btm308 CrossRefGoogle Scholar
  23. 23.
    Pritchard, J., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945—959.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, vol. 14, pp. 2611—2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Earl D.A. and von Holdt, B.M., STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Resour., 2012, vol. 4, pp. 359—361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  26. 26.
    Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, pp. 1—9.Google Scholar
  27. 27.
    Lebedeva, T.V., Genetic diversity of common wheat Triticum aestivum L. for resistance to Blumeria graminis DC. f. sp. tritici Golovin, Vestnik VOGIS, 2008, vol. 12, pp. 685—690.Google Scholar
  28. 28.
    Lebedeva, T.V., Zuev, E.V., and Brykova, A.N., The expression of powdery mildew resistance in spring bread wheat cultivars from the VIR collection of plan genetic resources, Proceed. Applied Bot. Genet. Breed., 2018, vol. 179, no. 3, pp. 272—277.  https://doi.org/10.30901/2227-8834-2018-3-272-277 CrossRefGoogle Scholar
  29. 29.
    Somers, D.J., Isaac, P., and Edwards, K., A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2004, vol. 109, pp. 1105—1114.  https://doi.org/10.1007/s00122-004-1740-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Salina, E.A., Adonina, I.G., Badaeva, E.D., et al., A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases, Euphytica, 2015, vol. 204, pp. 91—101.  https://doi.org/10.1007/s10681-014-1344-5 CrossRefGoogle Scholar
  31. 31.
    Leonova, I.N., Stasyuk, A.I., Skolotneva, E.S., and Salina, E.A., Enhancement of leaf rust resistance of Siberian winter wheat varieties by marker-assisted selection, Cereal Res. Commun., 2017, vol. 45, pp. 621—632.  https://doi.org/10.1556/0806.45.2017.048 CrossRefGoogle Scholar
  32. 32.
    Li, H., Chen, X., Xin, Z.Y., et al., Development and identification of wheat—Haynaldia villosa 6DL.6VS chromosome translocation lines conferring resistance to powdery mildew, Plant Breed., 2005, vol. 124, pp. 203—205.  https://doi.org/10.1111/j1439-0523.2004.01062.x CrossRefGoogle Scholar
  33. 33.
    Qi, L.L., Chen, P.D., Liu, D.J., et al., The gene Pm21—a new source of resistance to wheat powdery mildew, Acta Agric. Sin., 1995, vol. 21, pp. 257—261.Google Scholar
  34. 34.
    Hao, M., Liu, M., Luo, J., et al., Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat, Front. Plant Sci., 2018, vol. 9, article no. 1040.  https://doi.org/10.3389/fpls.2018.01040 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Keller, M., Keller, B., Schachermayr, G., et al., Quantitative trait loci for resistance against powdery mildew in a segregating wheat x spelt population, Theor. Appl. Genet., 1999, vol. 98, pp. 903—912.  https://doi.org/10.1007/s001220051149 CrossRefGoogle Scholar
  36. 36.
    Jakobson, I., Peusha, H., Timofejeva, L., and Jarve, K., Adult plant and seedling resistance to powdery mildew in a Triticum aestivum × Triticum militinae hybrid line, Theor. Appl. Genet., 2006, vol. 112, pp. 760—769.  https://doi.org/10.1007/s00122-005-0181-2 CrossRefPubMedGoogle Scholar
  37. 37.
    Miranda, L.M., Murphy, J.P., Marshall, D., et al., Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.), Theor. Appl. Genet., 2006, vol. 113, pp. 1497—1504.  https://doi.org/10.1007/s00122-006-0397-9 CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang, R., Sun, B., Chen, J., et al., Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat, Theor. Appl. Genet., 2016, vol. 129, pp. 1975—1985.  https://doi.org/10.1007/s00122-016-2753-8 CrossRefPubMedGoogle Scholar
  39. 39.
    Xue, F., Wang, C., Li, C., et al., Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24,Theor. Appl. Genet., 2012, vol. 125, pp. 1425—1432.  https://doi.org/10.1007/s00122-012-1923-6 CrossRefPubMedGoogle Scholar
  40. 40.
    Lan, C., Liang, S., Wang, Z., et al., Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64, Phytopathology, 2009, vol. 99, pp. 1121—1126.  https://doi.org/10.1094/PHYTO-99-10-1121 CrossRefPubMedGoogle Scholar
  41. 41.
    Zhu, Z., Zhou, R., Kong, X., et al., Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat, Genome, 2005, vol. 48, pp. 585—590.  https://doi.org/10.1139/g05-016 CrossRefPubMedGoogle Scholar
  42. 42.
    Zhan, H., Li, G., Zhang, X., et al., Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat—Thinopyrum ponticum introgression line, PLoS One, 2014, vol. 9. e113455.  https://doi.org/10.1371/journal.pone.0113455 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Liu, W., Koo, D.H., Xia, Q., et al., Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat, Theor. Appl. Genet., 2017, vol. 130, pp. 841—848.  https://doi.org/10.1007/s00122-017-2855-y CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao, Z., Sun, Y., Somg, W., et al., Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99, Theor. Appl. Genet., 2013, vol. 126, pp. 3081—3089.  https://doi.org/10.1007/s00122-013-2194-6 CrossRefPubMedGoogle Scholar
  45. 45.
    Neu, C., Stein, N., and Keller, B., Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat, Genome, 2002, vol. 45, pp. 737—744.  https://doi.org/10.1139/g02-040 CrossRefPubMedGoogle Scholar
  46. 46.
    Aoun, M., Breiland, B., Turner, M.K., et al., Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection, Plant Genome, 2016, vol. 9, no. 3, pp. 1—24.  https://doi.org/10.3835/plantgenome2016.01.0008 CrossRefGoogle Scholar
  47. 47.
    Buloichik, A.A. and Borzyak, V.S., The occurrence of virulence genes in the Belarusian population of Blumeria graminis f. sp. tritici,Mikol. Fitopatol., 2013, vol. 47, pp. 405—409.Google Scholar
  48. 48.
    Cowger, C., Mehra, L., Arellano, C., et al., Virulence differences in Blumeria graminis f. sp. tritici from the Central and Eastern United States, Phytopathology, 2018, vol. 108, pp. 402—411.  https://doi.org/10.1094/PHYTO-06-17-0211-R CrossRefPubMedGoogle Scholar
  49. 49.
    Sochalova, L.P. and Likhenko, I.E., The study of wheat resistance to leaf pathogens in Western Siberia, Sib. Vestn. S.-kh. Nauki, 2011, no. 1, pp. 18—25.Google Scholar
  50. 50.
    Sochalova, L.P. and Piskarev, V.V., Resistance of varieties of spring soft wheat to agents of infections under conditions the changing climate of Western Siberia, Achivements Sci. Technol. AIC, 2017, vol. 31, no. 2, pp. 21—25.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations