Advertisement

Russian Journal of Genetics

, Volume 55, Issue 11, pp 1426–1437 | Cite as

Genetic Analysis of Turkish lynx (Lynx lynx) Based on Mitochondrial DNA Sequences

  • O. İbİş
  • S. Özcan
  • C. Kırmanoğlu
  • A. Keten
  • C. TezEmail author
ANIMAL GENETICS
  • 66 Downloads

Abstract

Genetic variability and phylogenetic relationships of the Eurasian lynx (Lynx lynx) have been reported by various researchers from species’ range. As genetic data of Turkish lynx comes from a single genetic study that only contains limited number of lynx samples from the Anatolian part of Turkey, there is still a lack of genetic information for the Eurasian lynx population distributed in Turkey. In this study, mitochondrial Cyt b (1140 bp) and COI (630 bp) sequences were obtained from eight Anatolian samples of the Eurasian lynx. The Anatolian lynx sequences were compared to those of conspecific populations published in GenBank. We found two COI (630 bp) and four Cyt b (1140 bp) haplotypes among the eight Anatolian lynx sequences. Despite the limited number of the Anatolian lynx sequences, Bayesian, Maximum Likelihood, Neighbor-Joining and Network analyses revealed that there was a significant genetic differentiation in the Eurasian lynx, in that at least there were two main mitochondrial lineages within the sampling area. Also, the present study suggested that the Anatolian lynx might have a relatively high genetic variability despite the scarce samples.

Keywords:

Eurasian lynx Lynx lynx mitochondrial DNA Cyt b COI Turkey 

Notes

ACKNOWLEDGMENTS

This study was supported by the Scientific Research Fund at Erciyes University (Project Nr: FHD-2016-6554). We would like to thank to the Wildlife Conservation, Rescue, Rehabilitation, Application and Research Center, Kafkas University, and Dr. Sami Şimşek for his assistance in providing the samples, and Donna Sue Özcan for English editing.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Status and Conservation of the Eurasian Lynx (Lynx lynx) in Europe in 2001, von Arx, M., Breitenmoser-Würsten, C., Zimmermann, F., and Breitenmoser, U., Eds., Muri, Switzerland: KORA, 2004.Google Scholar
  2. 2.
    Wilson, D.E. and Reeder, D.M., Mammal Species of the World: A Taxonomic and Geographic Reference, Baltimore: Johns Hopkins University Press, 2005, 3rd ed.Google Scholar
  3. 3.
    Breitenmoser, U., Breitenmoser-Würsten, C., Lanz, T., et al., Lynx lynx (errata version published in 2017), The IUCN Red List of Threatened Species2015. eT12519A121707666. Accessed April 25, 2018.Google Scholar
  4. 4.
    Aulagnier, S., Haffner, P., Mitchell-Jones, A.J., et al., Mammals of Europe, North Africa and the Middle East, London: A. and C. Black, 2009.Google Scholar
  5. 5.
    Hellborg, K., Walker, C.W., Rueness, E.K., et al., Differentiation and levels of genetic variation in northern European lynx (Lynx lynx) populations revealed by microsatellites and mitochondrial DNA analysis, Conserv. Genet., 2002, vol. 3, no. 2, pp. 97—111.CrossRefGoogle Scholar
  6. 6.
    Johnson, W.E., Godoy, J.A., Palomares, F., et al., Phylogenetic and phylogeographic analysis of Iberian lynx populations, J. Hered., 2004, vol. 95, no. 1, pp. 19—28.CrossRefGoogle Scholar
  7. 7.
    Gugolz, D., Bernasconi, M.V., Breitenmoser-Würsten, C., and Wandeler, P., Historical DNA reveals the phylogenetic position of the extinct Alpine lynx, J. Zool., 2008, vol. 275, no. 2, pp. 201—208.CrossRefGoogle Scholar
  8. 8.
    Ratkiewicz, M., Matosiuk, M., Kowalczyk, R., et al., High levels of population differentiation in Eurasian lynx at the edge of the species' western range in Europe revealed by mitochondrial DNA analyses, Anim. Conserv., 2012, vol. 15, no. 6, pp. 603—612.CrossRefGoogle Scholar
  9. 9.
    Ratkiewicz, M., Matosiuk, M., Saveljev, A.P., et al., Long-range gene flow and the effects of climatic and ecological factors on genetic structuring in a large, solitary carnivore: the Eurasian lynx, PLoS One, 2014, vol. 9, no. 12. e115160CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sindičić, M., Gomerčić, T., Galov, A., Repetitive sequences in Eurasian lynx (Lynx lynx L.) mitochondrial DNA control region, Mitochondrial DNA, 2012, vol. 23, no. 3, pp. 201—207.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rueness, E.K., Naidenko, S., Trosvik, P., and Stenseth, N.C., Large-scale genetic structuring of a widely distributed carnivore—the Eurasian lynx (Lynx lynx), PLoS One, 2014, vol. 9, no. 4. e93675CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ning, Y., Liu, H., Jiang, G., and Ma, J., Phylogenetic relationship of Eurasian lynx (Lynx lynx) revealed by complete mitochondrial genome, Mitochondrial DNA, Part A, 2016, vol. 27, no. 5, pp. 3477—3478.CrossRefGoogle Scholar
  13. 13.
    Cömert, N., Carlı, O., and Dinçtürk, H.B., The missing lynx of Eurasia at its southern edge: a connection to the critically endangered Balkan lynx, Mitochondrial DNA, Part A, 2018.  https://doi.org/10.1080/24701394.2018.1445240
  14. 14.
    Rueness, E.K., Jorde, P.E., Hellborg, L., et al., Cryptic population structure in a large, mobile mammalian predator: the Scandinavian lynx, Mol. Ecol., 2003, vol. 12, no. 10, pp. 2623—2633.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bull, J.K., Heurich, M., Saveljev, A.P., et al., The effect of reintroductions on the genetic variability in Eurasian lynx populations: the cases of Bohemian–Bavarian and Vosges–Palatinian populations, Conserv. Genet., 2016, vol. 17, no. 5, pp. 1229—1234.CrossRefGoogle Scholar
  16. 16.
    Wang, X., Wei, K., Zhang, Z., et al., Major histocompatibility complex class II DRB exon-2 diversity of the Eurasian lynx (Lynx lynx) in China, J. Nat. Hist., 2009, vol. 43, nos. 3—4, pp. 245—257.CrossRefGoogle Scholar
  17. 17.
    Can, Ö.E., Status, Conservation and Management of Large Carnivores in Turkey, Strasbourg: Convention on the Conservation of European Wildlife and Natural Habitats, 2004.Google Scholar
  18. 18.
    Kryštufek, B. and Vohralik, V., Mammals of Turkey and Cyprus: Rodentia II: Cricetinae, Muridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae, Castoridae, Koper: Knjiznica Annales Majora, 2009, 1st ed.Google Scholar
  19. 19.
    Albayrak, İ., New record of Lynx lynx (L., 1758) in Turkey (Mammalia: Carnivora), Tr. J. Zool., 2012, vol. 36, no. 6, pp. 814—819.Google Scholar
  20. 20.
    Chynoweth, M.W., Çoban, E., and Şekercioğlu, Ç.H., Conservation of a new breeding population of Caucasian lynx (Lynx lynx dinniki) in eastern Turkey, Tr.J. Zool., 2015, vol. 39, no. 3, pp. 541—543.Google Scholar
  21. 21.
    Cooperation in the European Mountains: 2: The Caucasus, Price, M.F., Ed., Gland, Switzerland: IUCN, 2000.Google Scholar
  22. 22.
    Baskaya, S. and Bilgili, E., Does the leopard Panthera pardus still exist in the Eastern Karadeniz Mountains of Turkey?, Oryx, 2004, vol. 38, no. 2, pp. 228—232.CrossRefGoogle Scholar
  23. 23.
    Can, Ö.E., Large Carnivores in Turkey, Species 38, Quebec: World Conservation Union, 2002.Google Scholar
  24. 24.
    Johnson, K., The status of mammalian carnivores in Turkey, Endangered Species UPDATE, 2002, vol. 19, no. 6, pp. 232—237.Google Scholar
  25. 25.
    Johnson, K., Species at risk status and distribution of the leopard (Panthera pardus) in Turkey and the Caucasus Mountains, Endangered Species UPDATE, 2003, vol. 20, no. 3, pp. 107—122.Google Scholar
  26. 26.
    Giannatos, G., Albayrak, T., and Erdogan, A., Status of the caracal in protected areas in south-western Turkey, CATnews, 2006, no. 45, pp. 23—24.Google Scholar
  27. 27.
    De Marinis, A. and Masseti, M., Mammalian fauna of the Temessos National Park, Turkey, Animal Biodiversity in the Middle East (Proc. First Middle Eastern Biodiversity Congress, Aqaba, Jordan, 20–23 October 2008), Neubert, E., Amr, Z., Taiti, S., and Gümüs, B., Eds., ZooKeys, 2009, no. 31, pp. 221—228.Google Scholar
  28. 28.
    Ambarlı, H., Mengüllüoğlu, D., and Bilgin, C.C., First camera trap pictures of Eurasian lynx from Turkey, CATnews, 2010, no. 52, p. 32.Google Scholar
  29. 29.
    Ucarli, Y., Usability of large carnivore as a keystone species in Eastern Black Sea Region, Turkey, Afr. J. Biotechnol., 2011, vol. 10, no. 11, pp. 2032—2036.Google Scholar
  30. 30.
    Albayrak, T., Giannatos, G., and Kabasakal, B., Carnivore and ungulate populations in the Beydağları Mountains (Antalya, Turkey): border region between Asia and Europe, Pol. J. Ecol., 2012, vol. 60, no. 2, pp. 419—428.Google Scholar
  31. 31.
    Avgan, A., Zimmermann, F., Güntert, M., et al., The first density estimation of an isolated Eurasian lynx population in southwest Asia, Wildlife Biol., 2014, vol. 20, no. 4, pp. 217—221.CrossRefGoogle Scholar
  32. 32.
    Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, no. 5, pp. 294—299.PubMedGoogle Scholar
  33. 33.
    Irwin, D.M., Kocher, T.D., and Wilson, A.C., Evolution of cytochrome b gene of mammals, J. Mol. Evol., 1991, vol. 32, no. 2, pp. 128—144.CrossRefGoogle Scholar
  34. 34.
    Koepfli, K.P. and Wayne, R.K., Phylogenetic relationships of otters (Carnivora; Mustelidae) based on mitochondrial cytochrome b sequences, J. Zool., 1998, vol. 246, no. 4, pp. 401—416.CrossRefGoogle Scholar
  35. 35.
    Katoh, K., Misawa, K., Kuma, K., and Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 2002, vol. 30, no. 14, pp. 3059—3066.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Librado, P. and Rozas, J., DnaSP v5, a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, no. 11, pp. 1451—1452.CrossRefGoogle Scholar
  37. 37.
    Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874.CrossRefGoogle Scholar
  38. 38.
    Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide substitutions, J. Mol. Evol., 1980, vol. 16, no. 2, pp. 111—120.CrossRefGoogle Scholar
  39. 39.
    Darriba, D., Taboada, G.L., Doallo, R., and Posada, D., jModelTest 2: more models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, no. 8, p. 772.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ronquist, F., Teslenko, M., Van Der Mark, P., et al., and Huelsenbeck, J.P., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 2012, vol. 61, no. 3, pp. 539—542.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rambaut, A., FigTree: Tree Figure Drawing Tool, Version 1.3.1, Institute of Evolutionary Biology, University of Edinburgh, 2009.Google Scholar
  42. 42.
    Wei, L., Wu, X., Zhu, L., and Jiang, Z., Mitogenomic analysis of the genus Panthera,Sci. China, Life Sci., 2011, vol. 54, no. 10, pp. 917—930.CrossRefGoogle Scholar
  43. 43.
    Zhang, W., Yue, B., Wang, X., et al., Analysis of variable sites between two complete South China tiger (Panthera tigris amoyensis) mitochondrial genomes, Mol. Biol. Rep., 2011, vol. 38, no. 7, pp. 4257—4264.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Phylogenet. Evol., 1999, vol. 16, no. 1, pp. 37—48.CrossRefGoogle Scholar
  45. 45.
    Spong, G., and Hellborg, L., A near-extinction event in lynx: do microsatellite data tell the tale?, Conserv. Ecol., 2002, vol. 6, no. 1, p. 15.CrossRefGoogle Scholar
  46. 46.
    Schmidt, K., Kowalczyk, R., Ozolins, J., et al., Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic States, Conserv. Genet., 2009, vol. 10, no. 2, pp. 497—501.CrossRefGoogle Scholar
  47. 47.
    Schmidt, K., Ratkiewicz, K., and Konopiński, M.K., The importance of genetic variability and population differentiation in the Eurasian lynx Lynx lynx for conservation, in the context of habitat and climate change, Mamm. Rev., 2011, vol. 41, no. 2, pp. 112—124.CrossRefGoogle Scholar
  48. 48.
    Sunnucks, P., Efficient genetic markers for population biology, Trends Ecol. Evol., 2000, vol. 15, no. 5, pp. 199—203.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Perry, E.A., Carr, S.M., Bartlett, S.E., and Davidson, W.S., A phylogenetic perspective on the evolution of reproductive behavior in pagophlis seals of the northwest Atlantic as indicated by DNA sequences, J. Mammal., 1995, vol. 76, no. 1, pp. 22—31.CrossRefGoogle Scholar
  50. 50.
    Taberlet, P., Fumagalli, L., Wust-Sauci, A.G., and Cosson, J.F., Comparative phylogeography and postglacial colonization routes in Europe, Mol. Ecol., 1998, vol. 7, no. 4, pp. 453—464.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rokas, A., Atkinson, R.J., Webster, L.M.I., et al., Out of Anatolia: longitudinal gradients in genetic diversity support an eastern origin for a circum-Mediterranean oak gallwasp Andricus quercustozae,Mol. Ecol., 2003, vol. 12, no. 8, pp. 2153—2174.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gündüz, İ., Jaarola, M., Tez, C., et al., Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a description of a new species, Mol. Phylogenet. Evol., 2007, vol. 43, no. 3, pp. 916—935.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fritz, U., Ayaz, D., Hundsdörfer, A.K., et al., Mitochondrial diversity of European pond turtles (Emys orbicularis) in Anatolia and the Ponto-Caspian Region: multiple old refuges, hotspot of extant diversification and critically endangered endemics, Org. Divers. Evol., 2009, vol. 9, no. 2, pp. 100—114.CrossRefGoogle Scholar
  54. 54.
    Stamatis, C., Suchentrunk, F., Moutou, K.A., et al., Phylogeography of the brown hare (Lepus europaeus) in Europe: a legacy of south-eastern Mediterranean refugia?, J. Biogeog., 2009, vol. 36, no. 3, pp. 515—528.CrossRefGoogle Scholar
  55. 55.
    Akın, C., Bilgin, C.C., Beerli, P., et al., Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by ecological processes and climate change in the Late Cenozoic, J. Biogeogr., 2010, vol. 37, no. 11, pp. 2111—2124.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Perktaş, U., Barrowclough, G.F., and Groth, J.G., Phylogeography and species limits in the green woodpecker complex (Aves: Picidae): multiple Pleistocene refugia and range expansion across Europe and Near East, Biol. J. Linn. Soc., 2011, vol. 104, no. 3, pp. 710—723.CrossRefGoogle Scholar
  57. 57.
    Gür, H., The effects of the Late Quaternary glacial-interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods?, Biol. J. Linn. Soc., 2013, vol. 109, no. 1, pp. 19—32.CrossRefGoogle Scholar
  58. 58.
    İbiş, O., Tez, C., and Özcan, S., Phylogenetic status of the Turkish red fox (Vulpes vulpes), based on partial sequences of the mitochondrial cytochrome b gene, Vert. Zool., 2014, vol. 64, no. 2, pp. 273—284.Google Scholar
  59. 59.
    İbiş, O., Aksöyek, E., Özcan, S., and Tez, C., A preliminary phylogenetic analysis of golden jackals (Canis aureus) (Canidae: Carnivora: Mammalia) from Turkey based on mitochondrial D-loop sequences, Vert. Zool., 2015, vol. 65, no. 3, pp. 391—397.Google Scholar
  60. 60.
    Korkmaz, E.M., Lunt, D.H., Çıplak, B., et al., The contribution of Anatolia to European phylogeography: the centre of origin of the meadow grasshopper, Chorthippus parallelus,J. Biogeog., 2014, vol. 41, no. 9, pp. 1793—1805.CrossRefGoogle Scholar
  61. 61.
    Bilgin, R., Back to the suture: the distribution of intraspecific genetic diversity in and around Anatolia, Int. J. Mol. Sci., 2011, vol. 12, no. 6, pp. 4080—4103.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Şekercioğlu, Ç.H., Anderson, S., Akçay, E., et al., Turkey’s globally important biodiversity in crisis, Biol. Conserv., 2011, vol. 144, no. 12, pp. 2752—2769.CrossRefGoogle Scholar
  63. 63.
    Aksöyek, E., İbiş, O., Özcan, S., et al., DNA barcoding of three species (Canis aureus, Canis lupus, Vulpes vulpes) of Canidae, Mitochondrial DNA, Part A, 2017, vol. 28, no. 5, pp. 747—755.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • O. İbİş
    • 1
    • 2
  • S. Özcan
    • 2
    • 3
  • C. Kırmanoğlu
    • 4
  • A. Keten
    • 5
  • C. Tez
    • 2
    • 3
    Email author
  1. 1.Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes UniversityKayseriTurkey
  2. 2.Genome and Stem Cell Center (GENKOK), Erciyes UniversityKayseriTurkey
  3. 3.Department of Biology, Faculty of Sciences, Erciyes UniversityKayseriTurkey
  4. 4.Program of Hunting and Wildlife, Department of Forestation, Akkuş Vocational School, Ordu UniversityAkkuşTurkey
  5. 5.Department of Wildlife Ecology and Management, Faculty of Forestry, Düzce UniversityDüzceTurkey

Personalised recommendations