Russian Journal of Genetics

, Volume 55, Issue 11, pp 1299–1305 | Cite as

Ex-situ Genebanks—Seed Treasure Chambers for the Future

  • A. BörnerEmail author
  • E. K. KhlestkinaEmail author


The paper gives an overview about the past and present situation of the maintenance of plant genetic resources in ex-situ genebanks where seed storage is the prevailing way of conservation. Therefore, seed storability/longevity is of exceptional importance for germplasm conservation. Beside environmental influence on the trait a strong genetic component was proven. Genetic analyses performed at IPK Gatersleben on barley, wheat, oilseed rape and tobacco are summarized. It was demonstrated that seed response to ageing treatment appears to be significantly influenced by both genetic background and maternal environment. It was also shown that processes involved in the experimental ageing protocols (high temperature and humidity) only partly mirror those operating during long term genebank storage.


plant genetic resources genebank seed longevity germplasm conservation genetic analysis— QTL 



The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Baur, E., Die Bedeutung der primitiven Kulturrassen und der wilden Verwandten unserer Kulturpflanzen für die Pflanzenzüchtung, Jb. Deut. Landw.-Ges., 1914, vol. 29, pp. 104—109.Google Scholar
  2. 2.
    Rodin, L.E., Reznik, S., Stapleton, P., and Löve, D., Five Continents by N. I. Vavilov, 2010.Google Scholar
  3. 3.
    Stubbe, H., Geschichte des Instituts für Kulturpflanzenforschung Gatersleben der Deutschen Akademie der Wissenschaften zu Berlin (1943—1968), in Studien zur Geschichte der Akademie der Wissenschaften der DDR, 1982, vol. 10.Google Scholar
  4. 4.
    Esakov, V.D., On the scientific relations of N.I. Vavilov to German geneticists and breeders, Die Kulturpflanze, 1988, vol. 36, pp. 61—69.CrossRefGoogle Scholar
  5. 5.
    Börner, A., Nickolai Ivanovich Vavilov and his footprint on plant genetic resources conservation in Germany, S.-kh.Biol., 2012, vol. 5, pp. 20—30.Google Scholar
  6. 6.
    Chen, H.F., Seedbanks: conserving the past for the future, Seed Sci. Technol., 1994, vol. 22, pp. 385—400.Google Scholar
  7. 7.
    Commission on Genetic Resources for Food and Agriculture, The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture, Rome: Food and Agriculture Organization of the United Nations, 2010.Google Scholar
  8. 8.
    Food and Agriculture Organization of the United Nations, The State of the World’s Plant Genetic Resources for Food and Agriculture, Rome, 1998.Google Scholar
  9. 9.
    Westengen, O.T., Jeppson, S., and Guarino, L., Global ex-situ crop diversity conservation and the svalbard global seed vault: assessing the current status, PLoS One, 2013, vol. 8, e64146.CrossRefGoogle Scholar
  10. 10. Scholar
  11. 11.
    Food and Agriculture Organization of the United Nations, Genebank Standards for Plant Genetic Resources for Food and Agriculture, Rome, 2014, rev. ed.Google Scholar
  12. 12.
    Milner, S.G., Jost, M., Taketa, S., et al., Genebank genomics highlights the diversity of a global barley collection, Nat. Genet., 2019, vol. 51, pp. 319—326. https:// Scholar
  13. 13.
    Nagel, M. and Börner, A., The longevity of crop seeds stored under ambient conditions, Seed Sci. Res., 2010, vol. 2, pp. 1—20.CrossRefGoogle Scholar
  14. 14.
    Nagel, M., Rehman-Arif, M.A., Rosenhauer, M., and Börner, A., Longevity of seeds—intraspecific differences in the Gatersleben genebank collections, in Tagungsband 60: Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, Gumpenstein, Österreich, 24—26 November 2009, 2010, pp. 179—181.Google Scholar
  15. 15.
    Nagel, M., Vogel, H., Landjeva, S., et al., Seed conservation in ex situ genebanks—genetic studies on longevity in barley, Euphytica, 2009, vol. 170, pp. 5—14.CrossRefGoogle Scholar
  16. 16.
    Nagel, M., Kranner, I., Neumann, K., et al., Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background, developmental and environmental conditions in barley, Plant Cell Environ., 2015, vol. 38, pp. 1011—1022.CrossRefGoogle Scholar
  17. 17.
    Varshney, R.K., Paulo, M.J., Grando, S., et al., Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.), Field Crops Res., 2012, vol. 126, pp. 171—180.CrossRefGoogle Scholar
  18. 18.
    Landjeva, S., Lohwasser, U., and Börner, A., Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth, Euphytica, 2010, vol. 171, pp. 129—143.CrossRefGoogle Scholar
  19. 19.
    Pestsova, E.G., Börner, A. and Röder, M.S., Development and QTL assessment of Triticum aestivum—Aegilops tauschii introgression lines. Theor. Appl. Genet., 2006, vol. 112, pp. 634—647.CrossRefGoogle Scholar
  20. 20.
    Rehman Arif, M.A., Nagel, M., Neumann, K., et al., Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches, Euphytica, 2012, vol. 186, pp. 1—13.CrossRefGoogle Scholar
  21. 21.
    Börner, A., Schumann, E., Fürste, A., et al., Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.), Theor. Appl. Genet., 2002, vol. 105, pp. 921—936.CrossRefGoogle Scholar
  22. 22.
    Quarrie, S.A., Dodig, D., Pekic, S., et al., Prospects for marker-assisted selection of improved drought responses in wheat, Bulg. J. Plant Physiol., 2003, special issue, pp. 83—95.Google Scholar
  23. 23.
    Neumann, K., Kobiljski, B., Dencic, S., et al., Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.), Mol. Breed., 2011, vol. 27, pp. 37—58.CrossRefGoogle Scholar
  24. 24.
    Rehman Arif, M.A., Nagel, M., Lohwasser, U., and Börner, A., Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.)., J. Biosci., 2017, vol. 42, pp. 81—89.CrossRefGoogle Scholar
  25. 25.
    Holzapfel, J., Voss, H.-H., Miedaner, T., et al., Inheritance of resistance to Fusarium head blight in three European winter wheat populations, Theor. Appl. Genet., 2008, vol. 117, pp. 1119—1128.CrossRefGoogle Scholar
  26. 26.
    Börner, A., Nagel, M., Agacka-Mołdoch, M., et al., QTL analysis of falling number and seed longevity in wheat (Triticum aestivum L.), J. Appl. Genet., 2018, vol. 59, pp. 35—42.CrossRefGoogle Scholar
  27. 27.
    Rehman Arif, M.A. and Börner, A., Mapping of QTL associated with seed longevity in durum wheat (Triticum durum Desf.), J. Appl. Genet., 2019, vol. 60, pp. 33—36.CrossRefGoogle Scholar
  28. 28.
    Nagel, M., Navakode, S., Scheibal, V., et al., The genetic basis of durum wheat germination and seedling growth under osmotic stress, Biol. Plant., 2014, vol. 58, pp. 681—688.CrossRefGoogle Scholar
  29. 29.
    Nagel, M., Rosenhauer, M., Willner, E., et al., Seed longevity in oilseed rape (Brassica napus L.)—genetic variation and QTL mapping, Plant Genet. Res.: Charact. Util., 2011, vol. 9, pp. 260—263.CrossRefGoogle Scholar
  30. 30.
    Badani, A.G., Snowdon, R.J., Baetzel, R., et al., Co-localisation of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus), Genome, 2006, vol. 49, pp. 1499—1509.CrossRefGoogle Scholar
  31. 31.
    Agacka-Modoch, M., Nagel, M., Doroszewska, T., et al., Mapping quantitative trait loci determining seed longevity in tobacco (Nicotiana tabacum L.), Euphytica, 2015, vol. 202 pp. 479—486.CrossRefGoogle Scholar
  32. 32.
    Xiao, B., Drake, K., Vontimitta, V., et al., Location of genomic regions contributing to Phytophthora nicotianae resistance in tobacco cultivar Florida 301, Crop Sci., 2013, vol. 53, pp. 473—481.CrossRefGoogle Scholar
  33. 33.
    Xue, Y., Zhang, S.Q., Yao, Q.H., et al., Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.), Euphytica, 2008, vol. 164, pp 739—744.CrossRefGoogle Scholar
  34. 34.
    Sasaki, K., Fukuta, Y., and Sato, T., Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage, Plant Breed., 2005, vol. 124, pp. 361—366.CrossRefGoogle Scholar
  35. 35.
    Zeng, D.L., Guo, L.B., Xu, Y.B., et al., QTL analysis of seed storability in rice, Plant Breed., 2006, vol. 125, pp. 57—60.CrossRefGoogle Scholar
  36. 36.
    Miura, K., Lyn, S.Y., Yano, M. and Nagamine, T., Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.), Theor. Appl. Genet., 2002, vol. 104, pp. 981—986.CrossRefGoogle Scholar
  37. 37.
    Li, G., Na, Y.W., Kwon, S.W., and Park, Y.J., Association analysis of seed longevity in rice under conventional and high-temperature germination conditions, Plant Syst. Evol., 2014, vol. 300, pp. 389—402.CrossRefGoogle Scholar
  38. 38.
    Stein, N., Prasad, M., Scholy, U., et al., A 1000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics, Theor. Appl. Genet., 2007, vol. 114, pp. 823—839.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
  2. 2.Vavilov All-Russian Institute of Plant Genetic ResourcesSt. PetersburgRussia

Personalised recommendations