Russian Journal of Genetics

, Volume 55, Issue 11, pp 1315–1329 | Cite as

Genetic Heterogeneity of a Diploid Grass Aegilops tauschii Revealed by Chromosome Banding Methods and Electrophoretic Analysis of the Seed Storage Proteins (Gliadins)

  • E. D. BadaevaEmail author
  • A. V. Fisenko
  • S. A. Surzhikov
  • A. A. Yankovskaya
  • N. N. Chikida
  • S. A. Zoshchuk
  • M. Kh. Belousova
  • A. Yu. Dragovich


Genetic diversity of diploid grass Ae. tauschii Coss (2n = 2x = 14, DD), the D-genome progenitor of common wheat, was assessed using fluorescence in situ hybridization (FISH) with eleven DNA probes representing satellite and microsatellite DNA sequences as well as the 45S and 5S rRNA gene families and by electrophoretic (EF) analysis of seed storage proteins (gliadins). A clear genetic differentiation of accessions into groups strangulata (Str) and tauschii (Tau) was observed. The groups differed in the presence of microsatellite repeats GAAn and ACTn and in the distribution of satellite DNA families, especially pAs1. On the basis of similarities of labeling patterns of DNA probes used in the study, we concluded that the Str group was phylogenetically closest to the D genome of common wheat. A comparison of spectra of gliadins revealed the highest similarity of Armenian and Azerbaijani accessions of Ae. tauschii to common wheat, which may indicate a contribution of Transcaucasian members of the Str group in the formation of the genetic pool of common wheat.


Aegilops tauschii D genome chromosome FISH repeated DNA sequences seed storage proteins (gliadins) evolution 



The accessions were obtained from the collection of genetic plant resources at the Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg, Russia), the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) (Gatersleben, Germany), USDA-ARS (Aberdeen, Idaho, USA), and the Weizmann Institute of Science (Rehovot, Israel).


The present study was supported by the budget projects of the Vavilov Institute of General Genetics of the Russian Academy of Sciences (no. 0112-2019-0002) and the Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources (no. 0662-2019-0006) and received partial support from the Russian Foundation for Basic Research (project no. 17-04-00087).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Dvořák, J., Luo, M.C., Yang, Z.L., and Zhang, H.B., The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat, Theor. Appl. Genet., 1998, vol. 97, no. 4, pp. 657—670. CrossRefGoogle Scholar
  2. 2.
    Lelley, T., Stachel, M., Grausgruber, H., and Vollmann, J., Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites, Genome, 2000, vol. 43, no. 4, pp. 661—668. CrossRefPubMedGoogle Scholar
  3. 3.
    Feldman, M., Origin of cultivated wheat, in The World Wheat Book: A History of Wheat Breeding, Bonjean, A.P. and Angus, W.J., Eds., Paris: Laroisier, 2001, pp. 3—56.Google Scholar
  4. 4.
    McFadden, E.S. and Sears, E.R., The origin of Triticum spelta and its free-threshing hexaploid relatives, J. Hered., 1946, vol. 37, no. 3, pp. 81—107. CrossRefPubMedGoogle Scholar
  5. 5.
    Kihara, H., Die Entdeckung des DD-Analysators beim Weizen, Agric .Hortic. (Tokio), 1944, vol. 19, pp. 889—890.Google Scholar
  6. 6.
    Lubbers, E.L., Gill, K.S., Cox, T.S., and Gill, B.S., Variation of molecular markers among gehically diverse accessions of Triticum tauschii,Genome, 1991, vol. 34, no. 3, pp. 354—361. CrossRefGoogle Scholar
  7. 7.
    Feldman, M. and Levy, A.A., Origin and evolution of wheat and related Triticeae species, in Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics, Molnár-Láng, M., Ceoloni, C., and Doležel, J., Eds., Springer-Verlag, 2015, pp. 21—76.Google Scholar
  8. 8.
    Kihara, H., Considerations on the evolution and distribution of Aegilops species based on the analyser-method, Cytologia, 1954, vol. 19, no. 4, pp. 336—357. CrossRefGoogle Scholar
  9. 9.
    Tsunewaki, K., Plasmon analysis as the counterpart of genome analysis, in Methods of Genome Analysis in Plant: Their Merrits and Pitfals, Jauhar, P.P., Ed., Boca Ration: CRC Press, 1996, pp. 271—299.Google Scholar
  10. 10.
    Kilian, B., Mammen, K., Millet, E., et al., Aegilops, in Wild Crop Relatives: Genomics and Breeding Resources. Cereals, Kole, C., Ed., Berlin: Springer-Verlag, 2011, pp. 1—76.Google Scholar
  11. 11.
    Van Slageren, M.W., Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. et Spach) Eig (Poaceae), Wageningen: Wageningen Agricultural Universitet, 1994.Google Scholar
  12. 12.
    Wei, H., Li, J., Peng, Z., et al., Relationships of Aegilops tauschii revealed by DNA fingerprints: the evidence for agriculture exchange between China and the West, Prog. Nat. Sci., 2008, vol. 18, no. 12, pp. 1525—1531. CrossRefGoogle Scholar
  13. 13.
    Singh, N., Wu, S., Tiwari, V., et al., Genomic analysis confirms population structure and identifies inter-lineage hybrids in Aegilops tauschii,Front. Plant Sci., 2019, vol. 10, no. 9.
  14. 14.
    Zhukovskii, P.M., Critical taxonomic reveiw of the genus Aegilops L. species, Tr. Prikl. Bot.,Genet. Sel., 1928, vol. 28, no. 1, pp. 417—609.Google Scholar
  15. 15.
    Kihara, H. and Tanaka, M., Morphological and physiological variation among Aegilops squarrosa strains collected in Pakistan, Afghanistan and Iran, Preslia, 1958, vol. 30, pp. 241—251.Google Scholar
  16. 16.
    Dudnikov, A.J., Aegilops tauschii Coss.: allelic variation of enzyme-encoding genes and ecological differentiation of the species, Genet. Res. Crop Evol., 2014, vol. 61, no. 7, pp. 1329—1344. CrossRefGoogle Scholar
  17. 17.
    Eig, A., Monographisch-kritische Übersicht der Gattung Aegilops, vol. 55 of Repertorium specierum novarum regni vegetabilis, Berlin: Beihefte, 1929.Google Scholar
  18. 18.
    Dudnikov, A.J., Polymorphism of gliadins in Aegilops tauschii Coss. local populations in two primary habitats in Dagestan, Genet. Res. Crop Evol., 2018, vol. 65, no. 3, pp. 845—854. CrossRefGoogle Scholar
  19. 19.
    Dudnikov, A.J., Searching for an effective conservation strategy of Aegilops tauschii genetic variatio, Cereal Res. Commun., 2009, vol. 37, no. 1, pp. 31—36. CrossRefGoogle Scholar
  20. 20.
    Dudnikov, A.J., Polymorphism of Got2 DNA sequences sheds light on Aegilops tauschii Coss. intraspecies divergence and origin of Triticum aestivum L., Genet. Res. Crop Evol., 2017, vol. 64, no. 7, pp. 1623—1640. CrossRefGoogle Scholar
  21. 21.
    Zhao, L., Ning, S., Yi, Y., et al., Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii,BMC Genomics, 2018, vol. 19, no. 1, p. 3. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang, J., Luo, M.C., Chen, Z., et al., Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat, New Phytol., 2013, vol. 198, no. 3, pp. 925—937. CrossRefPubMedGoogle Scholar
  23. 23.
    Badaeva, E.D., Amosova, A.V., Muravenko, O.V., et al., Genome differentiation in Aegilops: 3. Evolution of the D-genome cluster, Plant Syst. Evol., 2002, vol. 231, nos. 1—4, pp. 163—190. CrossRefGoogle Scholar
  24. 24.
    Rawat, N., Schoen, A., Singh, L., et al., TILL-D: an Aegilops tauschii TILLING resource for wheat improvement, Front. Plant Sci., 2018, vol. 9, no. 1665.
  25. 25.
    Rehman, A., Evans, N., Gianibelli, M.C., and Rose, R.J., Allelic variations in high and low molecular weight glutenins at the Glu-D(t) locus of Aegilops tauschii as a potential source for improving bread wheat quality, Aust. J. Agric. Res., 2008, vol. 59, no. 5, pp. 399—405. CrossRefGoogle Scholar
  26. 26.
    Suneja, Y., Gupta, A.K., and Bains, N.S., Stress adaptive plasticity: Aegilops tauschii and Triticum dicoccoides as potential donors of drought associated morpho-physiological traits in wheat, Front. Plant Sci., 2019, vol. 10, no. 211.
  27. 27.
    Schneider, A., Molnár, I., and Molnár-Láng, M., Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat, Euphytica, 2008, vol. 163, no. 1, pp. 1—19. CrossRefGoogle Scholar
  28. 28.
    Gill, B.S., Raupp, W.J., Sharma, H.C., et al., Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly, Plant Dis., 1986, vol. 70, pp. 553—556. CrossRefGoogle Scholar
  29. 29.
    McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat, in The 12th International Wheat Genetics Symposium, Yokohama, 2013. download.jsp.Google Scholar
  30. 30.
    Saluja, M., Kaur, S., Bansal, U., et al., Molecular mapping of linked leaf rust resistance and non-glaucousness gene introgressed from Aegilops tauschii Coss. in hexaploid wheat Triticum aestivum L., Plant Gen. Res.: Charact. Util., 2017, vol. 16, no. 1, pp. 82—88. CrossRefGoogle Scholar
  31. 31.
    Jaaska, V., Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group, Plant Syst. Evol., 1981, vol. 137, no. 4, pp. 259—273. CrossRefGoogle Scholar
  32. 32.
    Nishikawa, K., Furuta, Y., and Goshima, H., Genetic studies of α-amylase isozymes in wheat: 2. Reconstituted AABB tetraploid, Aegilops squarrosa and their synthetic AABBDD hexaploid, Jpn. J. Genet., 1975, vol. 50, no. 5, pp. 409—416. CrossRefGoogle Scholar
  33. 33.
    Nishikawa, K., Furuta, Y., and Wada, T., Genetic studies on α-amylase in wheat: 3. Intraspecific variation in Aegilops squarrosa and the birthplace of hexaploid wheat, Jpn. J. Genet., 1980, vol. 55, no. 5, pp. 325—336. CrossRefGoogle Scholar
  34. 34.
    Lafiandra, D., Masci, S., D’Ovidio, R., et al., Relationship between the D genome of hexaploid wheats (AABBDD) and Ae. squarrosa as deduced by seed storage proteins and molecular marker analyses, Hereditas, 1992, vol. 116, no. 3, pp. 233—238. CrossRefGoogle Scholar
  35. 35.
    Konarev, V.G., Belki pshenitsy (Wheat Proteins), Moscow: Kolos, 1980.Google Scholar
  36. 36.
    Yan, Y.M., Hsam, S.L.K., Yu, J.Z., et al., Genetic polymorphisms at Gli-D-t gliadin loci in Aegilops tauschii as revealed by acid polyacrylamide gel and capillary electrophoresis, Plant Breed., 2003, vol. 122, no. 2, pp. 120—124. CrossRefGoogle Scholar
  37. 37.
    Masci, S., D’Ovidio, R., Lafiandra, D., et al., Electrophoretic and molecular analysis of alpha-gliadins in Aegilops species (Poaceae) belonging to the D-genome cluster and in their putative progenitors, Plant Syst. Evol., 1992, vol. 179, no. 1—2, pp. 115—128. CrossRefGoogle Scholar
  38. 38.
    Saeidi, H., Rahiminejad, M.R., and Heslop-Harrison, J.S., Retroelement insertional polymorphisms, diversity and phylogeography within diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) sub-taxa in Iran, Ann. Bot., 2008, vol. 101, no. 6, pp. 855—861. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Friebe, B., Mukai, Y., and Gill, B.S., C-banding polymorphism in several accessions of Triticum tauschii (Aegilops squarrosa), Genome, 1992, vol. 35, no. 2, pp. 192—199. CrossRefGoogle Scholar
  40. 40.
    Majka, M., Kwiatek, M.T., Majka, J., and Wisniewska, H., Aegilops tauschii accessions with geographically diverse origin show differences in chromosome organization and polymorphism of molecular markers linked to leaf rust and powdery mildew resistance genes, Front. Plant Sci., 2017, vol. 8, p. 1149. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Molnár, I., Kubaláková, M., Šimková, H., et al., Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii,Theor. Appl. Genet., 2014, vol. 127, no. 5, pp. 1091—1104. CrossRefPubMedGoogle Scholar
  42. 42.
    Gill, K.S., Lubbers, E.L., Gill, B.S., et al., A genetic linkage map of Triticum tauschii (DD) and its relationshiop to the D genome of bread wheat (AABBDD), Genome, 1991, vol. 34, no. 3, pp. 362—374. CrossRefGoogle Scholar
  43. 43.
    Boyko, E.V., Gill, K.S., Mickelson-Yang, L., et al., A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat, Theor. Appl. Genet., 1999, vol. 99, nos. 1—2, pp. 16—26. CrossRefGoogle Scholar
  44. 44.
    Zhao, G., Zou, C., Li, K., et al., The Aegilops tauschii genome reveals multiple impacts of transposons, Nat. Plants, 2017, vol. 3, no. 12, pp. 946—955. CrossRefPubMedGoogle Scholar
  45. 45.
    You, F.M., Huo, N., Deal, K.R., et al., Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence, BMC Genomics, 2011, vol. 59. Scholar
  46. 46.
    Mizuno, N., Yamasaki, M., Matsuoka, Y., et al., Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat, Mol. Ecol., 2010, vol. 19, no. 5, pp. 999—1013. CrossRefPubMedGoogle Scholar
  47. 47.
    Dudnikov, A.J., Spatial patterns of adenylate kinase, catalase, endopeptidase and fructose-1,6-diphosphatase encoding genes allelic variation in Aegilops tauschii Coss., Genet. Res. Crop Evol., 2012, vol. 59, no. 1, pp. 1—8. CrossRefGoogle Scholar
  48. 48.
    Gogniashvili, M., Jinjikhadze, T., Maisaia, I., et al., Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution, Curr. Genet., 2016, vol. 62, no. 4, pp. 791—798. CrossRefPubMedGoogle Scholar
  49. 49.
    Badaeva, E.D., Chromosomal analysis in the study of the polyploid wheat B- (G-) genomes origin, Biol. Membr., 2001, vol. 18, no. 3, pp. 216—229.Google Scholar
  50. 50.
    Akhunov, E., Akhunova, A., and Dvořák, J., BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat, Theor. Appl. Genet., 2005, vol. 111, no. 8, pp. 1617—1622. CrossRefPubMedGoogle Scholar
  51. 51.
    Luo, M.-C., Gu, Y.Q., Puiu, D., et al., Genome sequence of the progenitor of the wheat D genome Aegilops tauschii,Nature, 2017, vol. 551, p. 498. CrossRefPubMedGoogle Scholar
  52. 52.
    Jia, J., Zhao, S., Kong, X., et al., Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation, Nature, 2013, vol. 496, no. 7443, pp. 91—95. CrossRefPubMedGoogle Scholar
  53. 53.
    Huo, N.X., Dong, L.L., Zhang, S.L., et al., New insights into structural organization and gene duplication in a 1.75-Mb genomic region harboring the α-gliadin gene family in Aegilops tauschii, the source of wheat D genome, Plant J., 2017, vol. 92, no. 4, pp. 571—583. CrossRefPubMedGoogle Scholar
  54. 54.
    Friebe, B. and Gill, B.S., Chromosome banding and genome analysis in diploid and cultivated polyploid wheats, in Methods in Genome Analysis in Plants: Their Merits and Pitfals, Jauhar, P.P., Ed., New York: CRC Press, 1996, pp. 39—60.Google Scholar
  55. 55.
    Rayburn, A.L. and Gill, B.S., Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa,Plant Mol. Biol. Rep., 1986, vol. 4, no. 2, pp. 102—109. CrossRefGoogle Scholar
  56. 56.
    Badaeva, E.D., Friebe, B., and Gill, B.S., Genome differentiation in Aegilops: 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species, Genome, 1996, vol. 39, no. 2, pp. 293—306. CrossRefPubMedGoogle Scholar
  57. 57.
    Badaeva, E.D., Friebe, B., and Gill, B.S., Genome differentiation in Aegilops: 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species, Genome, 1996, vol. 39, no. 6, pp. 1150—1158. CrossRefPubMedGoogle Scholar
  58. 58.
    Rayburn, A.L. and Gill, B.S., Molecular analysis of the D-genome of the Triticeae,Theor. Appl. Genet., 1987, vol. 73, no. 3, pp. 385—388. CrossRefPubMedGoogle Scholar
  59. 59.
    Komuro, S., Endo, R., Shitaka, K., and Kato, A., Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure, Genome, 2013, vol. 56, no. 3, pp. 131—137. CrossRefPubMedGoogle Scholar
  60. 60.
    Mirzaghaderi, G., Houben, A., and Badaeva, E., Molecular-cytogenetic analysis of Aegilops triuncialis and identification of its chromosomes in the background of wheat, Mol. Cytogenet., 2014, vol. 7, no. 1, p. 91. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Tang, S., Tang, Z., Qui, L., et al., Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH, Front. Plant Sci., 2018, vol. 9, no. 1104.
  62. 62.
    Jiang, M., Xiao, Z.Q., Fu, S.L., and Tang, Z.X., FISH karyotype of 85 common wheat cultivars/lines displayed by ND-FISH using oligonucleotide probes, Cereal Res. Commun., 2017, vol. 45, no. 4, pp. 549—563. CrossRefGoogle Scholar
  63. 63.
    Tang, Z., Yang, Z., and Fu, S., Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis, J. Appl. Genet., 2014, vol. 55, no. 3, pp. 313—318. CrossRefPubMedGoogle Scholar
  64. 64.
    Shewry, P.R. and Halford, N.G., Cereal seed storage proteins: structures, properties and role in grain utilization, J. Exp. Bot., 2002, vol. 53, no. 370, pp. 947—958. CrossRefPubMedGoogle Scholar
  65. 65.
    Kasarda, D.D., Bernardin, J.E., and Qualset, C.O., Relationship of gliadin protein components to chromosomes in hexaploid wheats (Triticum aestivum L.), Proc. Natl. Acad. Sci. U.S.A., 1976, vol. 73, no. 10, pp. 3646—3650. Scholar
  66. 66.
    Dong, L., Huo, N., Wang, Y., et al., Rapid evolutionary dynamics in a 2.8-Mb chromosomal region containing multiple prolamin and resistance gene families in Aegilops tauschii,Plant J., 2016, vol. 87, no. 5, pp. 495—506. CrossRefPubMedGoogle Scholar
  67. 67.
    Huo, N., Zhang, S., Zhu, T., et al., Gene duplication and evolution dynamics in the homeologous regions harboring multiple prolamin and resistance gene families in hexaploid wheat, Front. Plant Sci., 2018, vol. 9, no. 673.
  68. 68.
    Badaeva, E.D., Ruban, A.S., Aliyeva-Schnorr, L., et al., In situ hybridization to plant chromosomes, in Fluorescence in situ Hybridization (FISH): Application Guide, Liehr, T., Ed., Berlin: Springer-Verlag, 2017, pp. 477—494.Google Scholar
  69. 69.
    Gerlach, W.L. and Bedbrook, J.R., Cloning and characterization of ribosomal RNA genes from wheat and barley, Nucleic Acids Res., 1979, vol. 7, no. 7, pp. 1869—1885. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Gerlach, W.L. and Dyer, T.A., Sequence organization of the repeated units in the nucleus of wheat which contains 5S-rRNA genes, Nucleic Acids Res., 1980, vol. 8, no. 21, pp. 4851—4865. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Nagaki, K., Tsujimoto, H., Isono, K., and Sasakuma, T., Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae,Genome, 1995, vol. 38, no. 3, pp. 479—486. CrossRefPubMedGoogle Scholar
  72. 72.
    Bedbrook, R.J., Jones, J., O’Dell, M., et al., A molecular description of telomeric heterochromatin in Secale species, Cell, 1980, vol. 19, no. 2, pp. 545—560. CrossRefPubMedGoogle Scholar
  73. 73.
    Badaeva, E.D., Amosova, A.V., Goncharov, N.P., et al., A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat, Cytogenet. Genome Res., 2015, vol. 146, no. 1, pp. 71—79. CrossRefPubMedGoogle Scholar
  74. 74.
    Badaeva, E., Zoshchuk, S.A., Paux, E., et al., Fat element—a new marker for chromosome and genome analysis in the Triticeae, Chromosome Res., 2010, vol. 18, no. 6, pp. 697—709. CrossRefPubMedGoogle Scholar
  75. 75.
    Upelniek, V.P., Novosel’skaya-Dragovich, A.Yu., Shishkina, A.A., et al., Laboratornyi analiz belkov semyan pshenitsy. Tekhnologicheskaya instruktsiya “Diagnostika sortovogo sootvetstviya i chistoty semyan pshenitsy.” Metodicheskoe posobie (Laboratory Analysis of Proteins of Wheat Seeds: Technological Instruction: Diagnosis of Varietal Compliance and Purity of Wheat Seeds. Methodical Manual), Moscow: Inst. Obtsch. Genet. Ross. Akad. Nauk, 2013.Google Scholar
  76. 76.
    Pedersen, C. and Langridge, P., Identification of the entire chromosome complement of bread wheat by two-colour FISH, Genome, 1997, vol. 40, no. 5, pp. 589—593. CrossRefPubMedGoogle Scholar
  77. 77.
    Cuadrado, A., Schwarzacher, T., and Jouve, N., Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides, Theor. Appl. Genet., 2000, vol. 101, no. 5, pp. 711—717. CrossRefGoogle Scholar
  78. 78.
    Cuadrado, A. and Jouve, N., The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes, Chromosome Res., 2007, vol. 15, no. 6, pp. 711—720. CrossRefPubMedGoogle Scholar
  79. 79.
    Mukai, Y., Friebe, B., and Gill, B.S., Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total genomic rye DNA probes of ‘Imperial’ rye chromosomes added to ‘Chinese Spring’ wheat, Jpn. J. Genet., 1992, vol. 67, no. 2, pp. 71—83. CrossRefGoogle Scholar
  80. 80.
    Endo, T.R. and Gill, B.S., Somatic karyotype, heterochromatin distribution, and nature of chromosome differentiation in common wheat, Triticum aestivum L. em Thell., Chromosoma, 1984, vol. 89, no. 5, pp. 361—369. CrossRefGoogle Scholar
  81. 81.
    Mukai, Y., Endo, T.R., and Gill, B.S., Physical mapping of the 18S.26S rRNA multigene family in common wheat: identification of a new locus, Chromosoma, 1991, vol. 100(2), pp. 71—78. CrossRefGoogle Scholar
  82. 82.
    Jiang, J. and Gill, B.S., New 18S-26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats, Chromosoma, 1994, vol. 103, no. 3, pp. 179—185. CrossRefPubMedGoogle Scholar
  83. 83.
    Endo, T.R. and Gill, B.S., Identification of wheat chromosomes by N-banding, in Proceedings of 6th International Wheat Genetics Symposium, 1983, Kyoto: Plant Germ-Plasm Inst., Kyoto Univ., 1984, pp. 355—362.Google Scholar
  84. 84.
    Vrána, J., Kubaláková, M., Simková, H., et al., Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.), Genetics, 2000, vol. 156, no. 4, pp. 2033—2041. Scholar
  85. 85.
    Adonina, I.G., Goncharov, N.P., Badaeva, E.D., et al., (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication, Comp. Cytogenet., 2015, vol. 9, pp. 533—547. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Molnár, I., Vrána, J., Burešová, V., et al., Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat, Plant J., 2016, vol. 88, no. 3, pp. 452—467. CrossRefPubMedGoogle Scholar
  87. 87.
    Cuadrado, A., Cardoso, M., and Jouve, N., Increasing the physical markers of wheat chromosomes using SSRs as FISH probes, Genome, 2008, vol. 51, pp. 809—815. CrossRefPubMedGoogle Scholar
  88. 88.
    Dudnikov, A.J., Chloroplast DNA non-coding sequences variation in Aegilops tauschii Coss.: evolutionary history of the species, Genet. Res. Crop Evol., 2012, vol. 59, no. 5, pp. 683—699. CrossRefGoogle Scholar
  89. 89.
    Marcussen, T., Sandve, S., Heier, L., et al., Ancient hybridizations among the ancestral genomes of bread wheat, Science, 2014, vol. 345, no. 6194. CrossRefGoogle Scholar
  90. 90.
    Liu, B., Li, C., Wang, J., et al., Cytonuclear coevolution following homoploid hybrid speciation in Aegilops tauschii,Mol. Biol. Evol., 2018, vol. 36, no. 2, pp. 341—349. CrossRefPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. D. Badaeva
    • 1
    • 2
    Email author
  • A. V. Fisenko
    • 3
  • S. A. Surzhikov
    • 2
  • A. A. Yankovskaya
    • 1
  • N. N. Chikida
    • 4
  • S. A. Zoshchuk
    • 2
  • M. Kh. Belousova
    • 4
  • A. Yu. Dragovich
    • 1
  1. 1.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
  2. 2.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  3. 3.Tsitsin Main Moscow Botanical Garden, Russian Academy of SciencesMoscowRussia
  4. 4.Federal Research Center Vavilov All-Russian Institute of Plant Genetic ResourcesSt. PetersburgRussia

Personalised recommendations