Advertisement

Russian Journal of Genetics

, Volume 55, Issue 3, pp 368–377 | Cite as

Association of ABCB9 and COL22A1 Gene Polymorphism with Human Predisposition to Severe Forms of Tick-Borne Encephalitis

  • A. V. BarkhashEmail author
  • A. A. Yurchenko
  • N. S. Yudin
  • I. V. Kozlova
  • I. A. Borishchuk
  • M. V. Smolnikova
  • O. I. Zaitseva
  • L. L. Pozdnyakova
  • M. I. Voevoda
  • A. G. Romaschenko
HUMAN GENETICS
  • 7 Downloads

Abstract

Tick-borne encephalitis (TBE) is caused by a neurotropic RNA virus from the Flavivirus genus. TBE is characterized by a significant variability of clinical manifestations from nonparalytic forms (fever, meningitis) to severe paralytic (focal) forms (meningoencephalitis, poliomyelitis, polioencephalomyelitis). The result of interaction between a virus and a host (and, consequently, the viral disease course and outcome) largely depends on genetically determined ability of the host (particularly, human) organism immune system to suppress the development of viral infection. However, hereditary predisposition to TBE has been rather poorly studied in human populations. In this study, the results of whole exome sequencing of DNA samples from 22 Russian non-immunized TBE patients with severe TBE forms and 17 control individuals from the same populations are presented. Sixteen single nucleotide polymorphisms (SNPs) associated with predisposition to severe forms of TBE were identified. The genotype and allele frequencies for three of these SNPs localized in the ABCB9 (rs4148866, G/A, intron), COL22A1 (rs4909444, G/T, Ala938Asp), and ITGAL (rs1557672, G/A, intron) genes were then studied in larger samples of patients with different forms of TBE (n = 177) and in the control population (n = 215). As a result, the association of the ABCB9 and COL22A1 gene SNPs with the development of severe forms of TBE was for the first time demonstrated in the Russian population. The hypothesis regarding a possible mechanism of the effect of the ABCB9 gene intronic SNP on the process of human infection with TBE virus is considered.

Keywords:

tick-borne encephalitis genetic predisposition whole exome sequencing ABCB9 gene COL22A1 gene 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 16-15-00127).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the Bioethics Committee of the Institute of Cytology and Genetics (Siberian Branch, Russian Academy of Sciences). All patients gave written informed consent for participation in the study.

REFERENCES

  1. 1.
    Gritsun, T.S., Lashkevich, V.A., and Gould, E.A., Tick-borne encephalitis, Antiviral Res., 2003, vol. 57, pp. 129—146.  https://doi.org/10.1016/S0166-3542(02)00206-1 CrossRefGoogle Scholar
  2. 2.
    Ruzek, D., Dobler, G., and Donoso Mantke, O., Tick-borne encephalitis: pathogenesis and clinical implications, Travel Med. Infect. Dis., 2010, vol. 8, pp. 223—232.  https://doi.org/10.1016/j.tmaid.2010.06.004 CrossRefGoogle Scholar
  3. 3.
    Suss, J., Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia—an overview, Ticks Tick-Borne Dis., 2011, vol. 2, pp. 2—15.  https://doi.org/10.1016/j.ttbdis.2010.10.007 CrossRefGoogle Scholar
  4. 4.
    Bogovic, P. and Strle, F., Tick-borne encephalitis: a review of epidemiology, clinical characteristics, and management, World J. Clin. Cases, 2015, vol. 3, pp. 430—441.  https://doi.org/10.12998/wjcc.v3.i5.430 CrossRefGoogle Scholar
  5. 5.
    Chapman, S.J. and Hill, A.V., Human genetic susceptibility to infectious disease, Nat. Rev. Genet., 2012, vol. 13, pp. 175—188.  https://doi.org/10.1038/nrg3114 CrossRefGoogle Scholar
  6. 6.
    Khor, C.C. and Hibberd, M.L., Host—pathogen interactions revealed by human genome-wide surveys, Trends Genet., 2012, vol. 28, pp. 233—243.  https://doi.org/10.1016/j.tig.2012.02.001 CrossRefGoogle Scholar
  7. 7.
    Yudin, N.S., Barkhash, A.V., Maksimov, V.N., et al., Human genetic predisposition to diseases caused by viruses from Flaviviridae family, Mol. Biol. (Moscow), 2018, vol. 52, no. 2, pp. 165—181.  https://doi.org/10.1134/S0026893317050223.CrossRefGoogle Scholar
  8. 8.
    Barkhash, A.V., Perelygin, A.A., Babenko, V.N., et al., Variability in the 2'-5'-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease, J. Infect. Dis., 2010, vol. 202, no. 12, p. 9.CrossRefGoogle Scholar
  9. 9.
    Barkhash, A.V., Perelygin, A.A., Babenko, V.N., et al., Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis, Antiviral Res., 2012, vol. 93, no. 1, pp. 64—68.  https://doi.org/10.1016/j.antiviral.2011.10.017 CrossRefGoogle Scholar
  10. 10.
    Barkhash, A.V., Voevoda, M.I., and Romaschenko, A.G., Association of single nucleotide polymorphism rs3775291 in the coding region of the TLR3 gene with predisposition to tick-borne encephalitis in a Russian population, Antiviral Res., 2013, vol. 99, no. 2, pp. 136—138.  https://doi.org/10.1016/j.antiviral.2013.05.008 CrossRefGoogle Scholar
  11. 11.
    Barkhash, A.V., Babenko, V.N., Voevoda, M.I., and Romaschenko, A.G., Association of IL28B and IL10 gene polymorphism with predisposition to tick-borne encephalitis in a Russian population, Ticks Tick-Borne Dis., 2016, vol. 7, no. 5, pp. 808—812.  https://doi.org/10.1016/j.ttbdis.2016.03.019 CrossRefGoogle Scholar
  12. 12.
    Barkhash, A.V., Yurchenko, A.A., Yudin, N.S., et al., A matrix metalloproteinase 9 (MMP9) gene single nucleotide polymorphism is associated with predisposition to tick-borne encephalitis virus-induced severe central nervous system disease, Ticks Tick-Borne Dis., 2018, vol. 9, no. 4, pp. 763—767.  https://doi.org/10.1016/j.ttbdis.2018.02.010 CrossRefGoogle Scholar
  13. 13.
    Ovsyannikova, A.K., Rymar, O.D., Shakhtshneider, E.V., et al., ABCC8-related maturity-onset diabetes of the young (MODY12): clinical features and treatment perspective, Diabetes Ther., 2016, vol. 7, no. 3, pp. 591—600.  https://doi.org/10.1007/s13300-016-0192-9 CrossRefGoogle Scholar
  14. 14.
    Andrews, S., FastQC: A Quality Control Tool for High Throughput Sequence Data: Version 0.11.2, Cambridge, UK: Babraham Institute, 2014. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.Google Scholar
  15. 15.
    Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, no. 15, pp. 2114—2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefGoogle Scholar
  16. 16.
    Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows—Wheeler transform, Bioinformatics, 2009, vol. 25, no. 14, pp. 1754—1760.  https://doi.org/10.1093/bioinformatics/btp324 CrossRefGoogle Scholar
  17. 17.
    Li, H., Handsaker, B., Wysoker, A., et al., The sequence alignment/map format and SAMtools, Bioinformatics, 2009, vol. 25, no. 16, pp. 2078—2079.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefGoogle Scholar
  18. 18.
    McKenna, A., Hanna, M., Banks, E., et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res., 2010, vol. 20, no. 9, pp. 1297—1303.  https://doi.org/10.1101/gr.107524.110 CrossRefGoogle Scholar
  19. 19.
    Sherry, S.T., Ward, M.H., Kholodov, M., et al., dbSNP: the NCBI database of genetic variation, Nucleic Acids Res., 2001, vol. 29, no. 1, pp. 308—311.CrossRefGoogle Scholar
  20. 20.
    International HapMap Consortium et al., A second generation human haplotype map of over 3.1 million SNPs, Nature, 2007, vol. 449, no. 7164, pp. 851—861.Google Scholar
  21. 21.
    1000 Genomes Project Consortium et al., An integrated map of genetic variation from 1092 human genomes, Nature, 2012, vol. 491, no. 7422, pp. 56—65.  https://doi.org/10.1038/nature11632
  22. 22.
    Mills, R.E., Pittard, W.S., Mullaney, J.M., et al., Natural genetic variation caused by small insertions and deletions in the human genome, Genome Res., 2011, vol. 21, no. 6, pp. 830—839.  https://doi.org/10.1101/gr.115907.110 CrossRefGoogle Scholar
  23. 23.
    Wang, K., Li, M., and Hakonarson, H., ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res., 2010, vol. 38, no. 16. e164.  https://doi.org/10.1093/nar/gkq603 CrossRefGoogle Scholar
  24. 24.
    Purcell, S., Neale, B., Todd-Brown, K., et al., PLINK: a tool set for whole-genome association and population-based linkage analyses, Am. J. Hum. Gen., 2007, vol. 81, no. 3, pp. 559—575.CrossRefGoogle Scholar
  25. 25.
    Neff, M.M., Turk, E., and Kalishman, M., Web-based primer design for single nucleotide polymorphism analysis, Trends Genet., 2002, vol. 18, no. 12, pp. 613—615.  https://doi.org/10.1016/S0168-9525(02)02820-2 CrossRefGoogle Scholar
  26. 26.
    Zaykin, D.V. and Pudovkin, A.I., Two programs to estimate significance of χ2 values using pseudo-probability tests, J. Hered., 1993, vol. 84, p. 152.CrossRefGoogle Scholar
  27. 27.
    Guo, Y., Long, J., He, J., et al., Exome sequencing generates high quality data in non-target regions, BMC Genomics, 2012, vol. 13, p. 194.  https://doi.org/10.1186/1471-2164-13-194 CrossRefGoogle Scholar
  28. 28.
    Wang, Y., Shu, Y., Xiao, Y., et al., Hypomethylation and overexpression of ITGAL (CD11a) in CD4(+) T cells in systemic sclerosis, Clin. Epigenet., 2014, vol. 6, p. 25.  https://doi.org/10.1186/1868-7083-6-25 CrossRefGoogle Scholar
  29. 29.
    Gizaw, M. and Anandakumar, P., A review on ATP binding cassette (ABC) transporters, Int. J. Pharma Res. Health Sci., 2017, vol. 5, no. 2, pp. 1607—1615.  https://doi.org/10.21276/ijprhs.2017.02.01 Google Scholar
  30. 30.
    Holland, I.B. and Blight, M.A., ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans, J. Mol. Biol., 1999, vol. 293, no. 2, pp. 381—399.  https://doi.org/10.1006/jmbi.1999.2993 CrossRefGoogle Scholar
  31. 31.
    Jones, P.M. and George, A.M., The ABC transporter structure and mechanism: perspectives on recent research, Cell. Mol. Life Sci., 2004, vol. 61, no. 6, pp. 682—699.  https://doi.org/10.1007/s00018-003-3336-9 CrossRefGoogle Scholar
  32. 32.
    Ohara, T., Ohashi-Kobayashi, A., and Maeda, M., Biochemical characterization of transporter associated with antigen processing (TAP)-like (ABCB9) expressed in insect cells, Biol. Pharm. Bull., 2008, vol. 31, no. 1, pp. 1—5.  https://doi.org/10.1248/bpb.31.1 CrossRefGoogle Scholar
  33. 33.
    Bangert, I., Tumulka, F., and Abele, R., The lysosomal polypeptide transporter TAPL: more than a housekeeping factor? Biol. Chem., 2011, vol. 392, nos. 1—2.  https://doi.org/10.1515/BC.2011.007
  34. 34.
    Zollmann, T., Bock, C., Graab, P., and Abele, R., Team work at its best—TAPL and its two domains, Biol. Chem., 2015, vol. 396, nos. 9—10.  https://doi.org/10.1515/hsz-2014-0319
  35. 35.
    Kobayashi, A., Hori, S., Suita, N., and Maeda, M., Gene organization of human transporter associated with antigen processing-like (TAPL, ABCB9): analysis of alternative splicing variants and promoter activity, Biochem. Biophys. Res. Commun., 2003, vol. 309, no. 4, pp. 815—822.  https://doi.org/10.1016/j.bbrc.2003.08.081 CrossRefGoogle Scholar
  36. 36.
    Zhao, C., Tampé, R., and Abele, R., TAP and TAP-like – brothers in arms?, Naunyn Schmiedebergs Arch. Pharmacol., 2006, vol. 372, no. 6, pp. 444—450.  https://doi.org/10.1007/s00210-005-0028-z CrossRefGoogle Scholar
  37. 37.
    Zhang, F., Zhang, W., Liu, L., et al., Characterization of ABCB9, an ATP binding cassette protein associated with lysosomes, J. Biol. Chem., 2000, vol. 275, no. 30, pp. 23287—23294.  https://doi.org/10.1074/jbc.M001819200 CrossRefGoogle Scholar
  38. 38.
    Burset, M., Seledtsov, I.A., and Solovyev, V.V., SpliceDB: database of canonical and non-canonical mammalian splice sites, Nucleic Acids Res., 2001, vol. 29, no. 1, pp. 255—259.CrossRefGoogle Scholar
  39. 39.
    Förch, P., Merendino, L., Martínez, C., and Valcárcel, J., U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor of 65 kDa, U2AF65, can promote U1 snRNP recruitment to 5' splice sites, Biochem J., 2003, vol. 372, pp. 235—240.  https://doi.org/10.1042/BJ20021202 CrossRefGoogle Scholar
  40. 40.
    Lindenbach, B.D., Thiel, H.-J., and Rice, C.M., Flaviviridae: the viruses and their replication, in Fields Virology, Philadelphia: Lippincott-Raven, 2007, 5th ed., pp. 1101—1152.Google Scholar
  41. 41.
    Koch, M., Schulze, J., Hansen, U., et al., A novel marker of tissue junctions, collagen XXII, J. Biol. Chem., 2004, vol. 279, no. 21, pp. 22514—22521.  https://doi.org/10.1074/jbc.M400536200 CrossRefGoogle Scholar
  42. 42.
    Charvet, B., Guiraud, A., Malbouyres, M., et al., Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction, Development, 2013, vol. 140, no. 22, pp. 4602—4613.  https://doi.org/10.1242/dev.096024 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Barkhash
    • 1
    Email author
  • A. A. Yurchenko
    • 1
  • N. S. Yudin
    • 1
    • 2
  • I. V. Kozlova
    • 3
  • I. A. Borishchuk
    • 4
  • M. V. Smolnikova
    • 5
  • O. I. Zaitseva
    • 5
  • L. L. Pozdnyakova
    • 6
  • M. I. Voevoda
    • 1
    • 2
  • A. G. Romaschenko
    • 1
  1. 1.Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Scientific Centre for Family Health and Human Reproduction ProblemsIrkutskRussia
  4. 4.Irkutsk Regional Infectious Clinical HospitalIrkutskRussia
  5. 5.Scientific Research Institute of Medical Problems of the North, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  6. 6.City Infectious Clinical Hospital No. 1NovosibirskRussia

Personalised recommendations