Russian Journal of Genetics

, Volume 55, Issue 2, pp 180–196 | Cite as

Morphological Variation and Genetic Diversity of Gymnadenia conopsea (L.) R. Br. (Orchidaceae) Populations in the Northeast of European Russia (Komi Republic)

  • O. E. ValuyskikhEmail author
  • D. M. Shadrin
  • Ya. I. Pylina


Using ISSR-PCR approach, the genetic structure of G. conopsea populations have been studied in the Komi Republic (Russia) at the northern boundary of its range, where the populations have a high level of phenotypic variation. It was established that the reaction of G. conopsea specimens to the lack of heat was expressed as a decrease in the most plastic phenotypic traits (shoot height, inflorescence length, number of flowers, leaf size) and determined a clear morphological differentiation in karst landscapes of the Timan Ridge with different temperature conditions. Two ISSR primers made it possible to reveal 839 loci, 37.79% of which were polymorphic. UPGMA analysis divided the pool of G. conopsea populations into two clusters: populations from the limestones of Timan (180 plants) and population from the Mezen-Vychegda Plain (20 plants). The assessment of genetic variability revealed the decreased parameters in the G. conopsea population from the Mezen-Vychegda Plain (P = 26.94%, He = 0.050, Is = 0.084). At limestones of South Timan, the species had both highly variable populations (P = 55.5–60.6%, He = 0.084–0.089) and populations with decreased parameters of genetic variability (P = 29.3–29.6%, He = 0.053–0.059). Despite the high diversity of karst landscapes and territorial fragmentation of the populations, we found a low level of interpopulation differentiation (F = 0.017–0.036) and strong genetic flows between the populations (D = 0.007–0.020, I = 0.980–0.993). A Mantel test did not show a correlation between the genetic and geographic distances among populations (r = –0.047; p = 0.04). A majority of the revealed genetic variability was realized inside the populations. The share of interpopulation variability was only 14%. An analysis of genetic relationships based on the Structure v2.3 software program allowed us to divide the samples according to two geographical areas and to suggest that in South Timan there are at least four separate groups differing in ISSR markers. No clear dependence between the type of karst landscape and genetic variability of the populations was detected.


Gymnadenia conopsea boundary of range morphological traits ISSR markers genetic diversity polymorphism 



We are especially grateful to Dr. Ivan Fedorovich Chadin (Institute of Biology, Komi Scientific Center, Ural Branch, Russian Academy of Science) for his help in statistical data processing, exchange of ideas, and support, and we are also grateful to Marina Vladimirovna Protopopova (Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences) for valuable comments during the preparation of the article.

Expeditionary trips, purchase of reagents, and the necessary equipment for the study were supported by the Russian Foundation for Basic Research, grant no. 16-34-00608 mol_a. The work was performed within the scope of the state task “Structural and Functional Organization of Plant Communities, Diversity of Flora, Lichen Biota, and Mycobiota of the Southern Part of the National Park Ugyd Va” (no. AAAA-A16-116021010241-9).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Kadastr osobo okhranyaemykh prirodnykh territorii Respubliki Komi (Inventory of Specially Protected Natural Territories of the Komi Republic), Degteva, S.V. and Ponomarev, V.I., Eds., Syktyvkar, 2014.Google Scholar
  2. 2.
    Il’chukov, S.V., Landshafty Respubliki Komi (Landscapes of the Komi Republic), Yekaterinburg, 2010.Google Scholar
  3. 3.
    Elsakov, V.V. and Teteryuk, L.V., The role of relief in the formation of the karst landscapes vegetation in the European northeast of Russia, Issled. Zemli Kosmosa, 2012, no. 3, pp. 78—93.Google Scholar
  4. 4.
    Krasnaya kniga respubliki Komi (The Red Book of the Komi Republic), Taskaev, A.I., Ed., Syktyvkar, 2009.Google Scholar
  5. 5.
    Yudin, Yu.P., Relict flora on limestones in the northwestern European part of the Soviet Union, Materialy po istorii flory i rastitel’nosti SSSR (Materials on the History of Flora and Vegetation in the Soviet Union), Moscow: Akad. Nauk SSSR, 1963, issue 4, pp. 493—587.Google Scholar
  6. 6.
    Teteryuk, L.V., The role of Timan limestones in the conservation of rare vascular plant species, Biologicheskoe raznoobrazie rastitel’nogo mira Urala i sopredel’nykh territorii (Biological Diversity of Flora of the Urals and Adjacent Territories) (Proc. All-Russian Conference With Int. Participation), Yekaterinburg, 2012, pp. 92—94.Google Scholar
  7. 7.
    Grant, V., Plant Speciation, New York: Columbia Univ. Press, 1981, 2nd ed.Google Scholar
  8. 8.
    Schaal, B.A., Hayworth, D.A., Olsen, K.M., et al., Phylogeographic studies in plants: problems and prospects, Mol. Ecol., 1998, vol. 7, pp. 465—474. CrossRefGoogle Scholar
  9. 9.
    Hedrick, P.W., Genetics of Populations, Sudbury: Jones and Bartlett, 2000, 2nd ed.Google Scholar
  10. 10.
    Tremblay, R.L. and Ackerman, J.D., The genetic structure of orchid populations and its evolutionary importance, Lankesteriana, 2003, vol. 7, pp. 87—92.Google Scholar
  11. 11.
    Biologicheskoe raznoobrazie osobo okhranyaemykh prirodnykh territorii Respubliki Komi (Biological Diversity in Specially Protected Natural Areas of the Komi Republic), vol. 4: Okhranyaemye prirodnye kompleksy Timana (Protected Natural Complexes of the Timan Range), Degteva, S.V., Ed., Syktyvkar: Komi Nauchn. Tsentr Ural. Otd. Russ. Akad. Nauk, 2006, part 1.Google Scholar
  12. 12.
    Teteryuk, L.V., Orchid plants of the relic rocky floristic complex on Timan limestones, Vestn. Tver. Gos. Univ., Ser. Biol. Ekol., 2007, no. 4, pp. 159—160.Google Scholar
  13. 13.
    Flora severo-vostoka evropeiskoi chasti SSSR (Flora of the Northeast of the European part of the Soviet Union), Leningrad: Nauka, 1976, vol. 2.Google Scholar
  14. 14.
    Vakhrameeva, M.G., Tatarenko, I.V., Varlygina, T.I., et al., Orchids of Russia and Adjacent Countries (within the Borders of the Former USSR), Ruggell: A.R.G. Gantner, 2008.Google Scholar
  15. 15.
    Blinova, I.V., The biology of orchids in Northeastern Fennoscandia and their survival strategies at the northern distribution limit, Extended Abstract of Doctoral Dissertation, Moscow, 2009.Google Scholar
  16. 16.
    Valuiskikh, O.E., Population biology of Gymnadenia conopsea (L.) R. Br. (Orchidaceae) on the northern border of the range, Extended Abstract of Cand. Sci. Dissertation, Syktyvkar, 2009.Google Scholar
  17. 17.
    Teteryuk, L.V., Valuiskikh, O.E., and Savinykh, N.P., Biomorphology and ontogeny of Gymnadenia conopsea (L.) R. Br. (Orchidaceae) in marginal populations on limestones in the northeast of European Russia, Russ. J. Ecol., 2013, vol. 44, no. 4, pp. 282—290. CrossRefGoogle Scholar
  18. 18.
    Valuiskikh, O.E. and Teteryuk, L.V., Structure and dynamics of marginal Gymnadenia conopsea (L.) R. Br. (Orchidaceae) populations on limestones in the northeast of European Russia, Russ. J. Ecol., 2013, vol. 44, no. 6, pp. 461—467. CrossRefGoogle Scholar
  19. 19.
    Valuiskikh, O.E. and Teteryuk, L.V., Ecotopic, morphological, and ontogenetic differentiation of Gymnadenia conopsea var. alpina Rchb. f. ex Beck. (Orchidaceae), Ekologiya: fakty, gipotezy, modeli (Ecology: Facts, Hypotheses, Models) (Proc. Conference of Young Scientists, dedicated to the 170th anniversary of V.V. Dokuchaev), Yekaterinburg: Gotshitskii, 2016, pp. 13—21.Google Scholar
  20. 20.
    Pinheiro, L.R., Rabbani, A.R., Cruz da Silva, A.V., et al., Genetic diversity and population structure in the Brazilian Cattleya labiata (Orchidaceae) using RAPD and ISSR markers, Plant Syst. Evol., 2012, vol. 298, pp. 1815—1825. CrossRefGoogle Scholar
  21. 21.
    Warghat, A.R., Bajpai, P.K., Srivastavaa, R.B., et al., Population genetic structure and conservation of small fragmented locations of Dactylorhiza hatagirea in Ladakh region of India, Sci. Hortic., 2013, vol. 164, pp. 448—454. CrossRefGoogle Scholar
  22. 22.
    Khomann, E.E., Nam, I.Y., and Zayakin, V.V., Using ISSR-markers for genetic diversity of some representatives of Orchidaceae, Biosci. Biotech. Res. Asia, 2016, vol. 13, no. 1, pp. 115—118. CrossRefGoogle Scholar
  23. 23.
    Talalaj, I. and Skierczynski, M., Mechanism of spontaneous autogamy in the allogamous lepidopteran orchid Gymnadenia conopsea (L.) R.Br. (Orchidaceae), Acta Biol. Cracovensia, Ser. Bot., 2015, vol. 57, no. 1, pp. 130—140. Google Scholar
  24. 24.
    Krivosheev, M.M. and Barlybaeva, M.Sh., Pollinators of Gymnadenia conopsea (L.) R. Brown s. l. (Orchidaceae Juss.) in the South Urals, Ekologicheskie problemy promyshlennykh gorodov (Environmental Problems of Industrial Cities) (Proc. 8th Int. Theor. Pract. Conference), Saratov: Saratov Gos. Tekh. Univ., 2017, pp. 345—348.Google Scholar
  25. 25.
    Valuiskikh, O.E., Vegetative reproduction of Gymnadenia conopsea (L.) R. Br. (Orchidaceae), Vestn. Tver. Gos. Univ., Ser. Biol. Ekol., 2007, no. 6(22), pp. 129—134.Google Scholar
  26. 26.
    Kulikov, P.V. and Filippov, E.G., Reproductive strategy of orchids in the temperate zone, in Embriologiya tsvetkovykh rastenii: terminologiya i kontseptsii (Embryology of Flowering Plants: Terminology and Concepts), vol. 3: Sistemy reproduktsii (Systems of Reproduction), St. Petersburg: Mir i Sem’ya, 2000, pp. 510—513. Google Scholar
  27. 27.
    Kirillova, I.A. and Kirillov, D.V., Reproduction biology of Gymnadenia conopsea (L.) R. Br. (Orchidaceae) on its northern distribution border, Sib. Ekol. Zh., 2015, no. 4, pp. 617—629.
  28. 28.
    Smirnova, O.V., Zaugol’nova, L.B., Ermakova, I.M., et al., Tsenopopulyatsii rastenii: osnovnye ponyatiya i struktura (Plant Cenopopulations: Basic Concepts and Structure), Moscow: Nauka, 1976.Google Scholar
  29. 29.
    Novakovskii, A.B., The interaction of Excel and the statistical R package for data processing in ecology, Vestn. Inst. Biol. Komi Nauchn. Tsentr Ural. Otd. Russ. Akad. Nauk, 2016, no. 3, pp. 26—33.Google Scholar
  30. 30.
    Archibald, J.K., Crawford, D.J., Santos-Guerra, A., and Mort, M.E., The utility of automated analysis of inter-simple sequence repeat (ISSR) loci for resolving relationships in the canary island species of tolpis (Asteraceae), Am. J. Bot., 2006, vol. 93, no. 8, pp. 1154—1162. CrossRefGoogle Scholar
  31. 31.
    Debnath, S.C., Khanizadeh, S., Jamieson, A.R., and Kempler, C., Inter Simple Sequence Repeat (ISSR) markers to assess genetic diversity and relatedness within strawberry genotypes, Can. J. Plant Sci., 2008, vol. 88, pp. 313—322. CrossRefGoogle Scholar
  32. 32.
    Kamvar, Z.N., Tabima, J.F., and Grünwald, N.J., Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and or sexual reproduction, Peer J., 2014, vol. 2, p. 14. CrossRefGoogle Scholar
  33. 33.
    Jombart, T., Adegenet: a R package for the multivariate analysis of genetic markers, Bioinformatics, 2008, vol. 24, pp. 1403—1405. CrossRefGoogle Scholar
  34. 34.
    Jombart, T., A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using Adegenet 1.4–0, 2013.Google Scholar
  35. 35.
    Peakall, R. and Smouse, P.E., Genalex 6: genetic analysis in Excel: population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288—295. CrossRefGoogle Scholar
  36. 36.
    Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, no. 949, pp. 283—292. CrossRefGoogle Scholar
  37. 37.
    Diniz-Filho, J.A.F., Soares, T.N., Lima, J.S., et al., Mantel test in population genetics, Genet. Mol. Biol., 2013, vol. 36, no. 4, pp. 475—485. CrossRefGoogle Scholar
  38. 38.
    Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, no. 1, p. 9.Google Scholar
  39. 39.
    Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945—959. Google Scholar
  40. 40.
    Falush, D., Stephens, M., and Pritchard, J.K., Inference of population structure using multilocus genotype data: dominant markers and null alleles, Mol. Ecol. Notes, 2007, vol. 7, no. 4, pp. 574—578. CrossRefGoogle Scholar
  41. 41.
    Pritchard, J.K., Wen, W., and Falush, D., Documentation for STRUCTURE Software: Version 2.3, 2010.Google Scholar
  42. 42.
    Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software structure: a simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611—2620. CrossRefGoogle Scholar
  43. 43.
    Jakobsson, M. and Rosenberg, N.A., CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure, Bioinformatics, 2007, vol. 23, no. 14, pp. 1801—1806.CrossRefGoogle Scholar
  44. 44.
    Rosenberg, N.A., Distruct: a program for the graphical display of population structure, Mol. Ecol. Notes, 2004, vol. 4, pp. 137—138. CrossRefGoogle Scholar
  45. 45.
    Kopelman N.M., Mayzel J., Jakobsson M., et al., CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Resour., 2015, vol. 15, no. 5, pp. 1179—1191. CrossRefGoogle Scholar
  46. 46.
    Rostova, N.S., Korellyatsii: struktura i izmenchivost’ (Correlations: Structure and Variability), St. Petersburg: St. Petersburg Gos. Univ., 2002.Google Scholar
  47. 47.
    Valuiskikh, O.E. and Teteryuk, L.V., Phenotypic variation of Gymnadenia conopsea (L.) R. Br. (Orchidaceae) in marginal populations on limestones in the northeast of European Russia, Russ. J. Ecol., 2014, vol. 45, no. 1, pp. 24—32. CrossRefGoogle Scholar
  48. 48.
    Aver’yanov, L.V., Speciation and variability of species from the genus Gymnadenia R. Br. in the northern part of the range, Biologicheskie problemy Severa (Biological Problems in the North) (Proc. 9th Int. Symposium), Syktyvkar, 1981, part 1, p. 10.Google Scholar
  49. 49.
    Soliva, M. and Widmer, A., Genetic and floral divergence among sympatric populations of Gymnadenia conopsea s. l. (Orchidaceae) with different flowering phenology, Int. J. Plant Sci., 1999, vol. 160, no. 5, pp. 897—905. CrossRefGoogle Scholar
  50. 50.
    Nevskii, S.A., Family 36: Orchidaceae Lindl., in Flora SSSR (Flora of the Soviet Union), Leningrad: Akad. Nauk SSSR, 1935, issue 4, pp. 589—730.Google Scholar
  51. 51.
    Gustafsson, S. and Sjögren-Gulve, P., Genetic diversity in the rare orchid Gymnadenia odoratissima and a comparison with the more common congener G. conopsea, Conserv. Genet., 2002, vol. 3, pp. 225—234. CrossRefGoogle Scholar
  52. 52.
    Marhold, K., Jongepierova, I., and Krahulcova, A., Morphological and karyological differentiation of Gymnadenia densiflora and G. conopsea in the Czech Republic and Slovakia, Preslia, 2005, vol. 77, pp. 159—176.Google Scholar
  53. 53.
    Bateman, R.M. and Rudall, P.J., Phylogenetic context, generic affinities and evolutionary origin of the enigmatic Balkan orchid Gymnadenia frivaldii Hampe ex Griseb., Taxon, 2006, vol. 55, no. 1, pp. 107—118. CrossRefGoogle Scholar
  54. 54.
    Efimov, P.G., Sibling species of fragrant orchids (Gymnadenia: Orchidaceae, Magnoliophyta) in Russia, Russ. J. Genet., 2013, vol. 49, no. 3, pp. 299—309. CrossRefGoogle Scholar
  55. 55.
    Molecular Systematics and Plant Evolution, Hollingsworth, P.M., Bateman, R.M., Gornall, R.J., Eds., London, 1999.Google Scholar
  56. 56.
    Hedren, M., Plastid DNA variation in the Dactylorhiza incarnata/maculata polyploid complex and the origin of allotetraploid D. sphagnicola (Orchidaceae), Mol. Ecol., 2003, vol. 12, pp. 2669—2680. CrossRefGoogle Scholar
  57. 57.
    Hamrick, J.L. and Godt, M.J.W., Allozyme diversity in plant species, in Plant Population Genetics, Breeding and Genetic Resources, Brown, H.D., Clegg, M.T., and Kahler, A.L., Eds., Sunderland: Sinauer Associates, 1989, pp. 43—46.Google Scholar
  58. 58.
    Hens, H., Pakanen, V.M., Jäkäläniemi, A., et al., Low population viability in small endangered orchid populations: genetic variation, seedling recruitment and stochasticity, Biol. Conserv., 2017, vol. 210, pp. 174—183. CrossRefGoogle Scholar
  59. 59.
    Tremblay, R.L., Ackerman, J.D., Zimmerman, J.K., and Calvo, R.N., Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification, Biol. J. Linn. Soc., 2005, vol. 84, pp. 1—54. CrossRefGoogle Scholar
  60. 60.
    Voronina, E.Yu., Mycorrhizas in terrestrial ecosystems: ecological, physiological, and molecular genetic aspects of mycorrhizal symbioses, in Mikologiya segodnya (Mycology Today), Moscow: Nats. Akad. Mikologii, 2007, vol. 1, pp. 142—285.Google Scholar
  61. 61.
    Rasmussen, H., Terrestrial Orchids from Seed to Mycotrophic Plant, Cambridge: Cambridge Univ. Press, 1995. CrossRefGoogle Scholar
  62. 62.
    Batalov, A.E., Status of Gymnadenia conopsea (L.) R. Br. (Orchidaceae) populations in different phytocenoses, in Embriologiya tsvetkovykh rastenii: terminologiya i kontseptsii (Embryology of Flowering Plants: Terminology and Concepts), vol. 3: Sistemy reproduktsii (Systems of Reproduction), St. Petersburg: Mir i Sem’ya, 2000, pp. 524—532.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • O. E. Valuyskikh
    • 1
    Email author
  • D. M. Shadrin
    • 1
  • Ya. I. Pylina
    • 1
  1. 1.Institute of Biology, Komi Scientific Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations