Russian Journal of Genetics

, Volume 55, Issue 2, pp 212–219 | Cite as

High Allelic Diversity of the DRB3 Gene (MHC Class II) in Saiga (Saiga tatarica) L., 1766), Obtained by Next Generation Sequencing Method

  • K. K. Tarasyan
  • P. A. SorokinEmail author
  • N. V. Kashinina
  • M. V. Kholodova


The nucleotide sequences of the alleles of the DRB3 gene of the major histocompatibility complex (class II) of saiga antelope are described. A high degree of heterozygosity is found. The results of the analysis are consistent with the hypothesis of overdominance of heterozygotes. Phylogenetic relations of the DRB3 gene alleles of the saiga antelope and other Bovidae species do not correspond to the systematic position of Saiga tatarica. It is assumed that the polymorphism of the DRB3 gene alleles of saiga is primarily due to the variety of extracellular pathogens (bacteria, protozoa, helminths, and others) affecting its population during the evolutionary history of the species.


saiga major histocompatibility complex DRB3 gene allelic diversity 



We thank A.V. Davydov for assistance in organizing the sample collection; N.V. Koroban, an expert in the products of Roche Diagnostics Russia; and A.V. Kudryavtseva, head of the Center of Collective Use “Genome” of the Institute of Molecular Biology (Russian Academy of Sciences), for their help in performing the sequencing, as well as G.A. Bazykin, head of the sector of molecular evolution of Institute for Information Transmission Problems (Russian Academy of Sciences), for consultations on data processing.

This work was supported by the Russian Foundation for Basic Research, project no. 17-04-01351.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Soulé, M.E., Viable Populations for Conservation, Cambridge: Cambridge Univ. Press, 1987. CrossRefGoogle Scholar
  2. 2.
    Luikart, G., Sherwin, W.B., Steele, B.M., and Allendorf, F.W., Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change, Mol. Ecol., 1998, no. 7, pp. 963—974.
  3. 3.
    Frankham, R., Ecosystem recovery enhanced by genotypic diversity, Heredity, 2005, vol. 95, p. 183. CrossRefGoogle Scholar
  4. 4.
    Fox, C.W. and Reed, D.H., Inbreeding depression increases with environmental stress: an experimental study and meta-analysis, Evolution, 2011, vol. 65, no. 1, pp. 246—258. CrossRefGoogle Scholar
  5. 5.
    Willi, Y., Van Buskirk, J., and Hoffmann, A.A., Limits to the adaptive potential of small populations, Annu. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 433−458. CrossRefGoogle Scholar
  6. 6.
    Bensaid, A., Young, J.R., Kaushal, A., and Teale, A.J., Pulsed-field gel electrophoresis and its application in the physical analysis of the bovine MHC, Gene Mapping Techniques 122 and Applications, McLaren, Ed., New York: Marcel Dekker, 1991, p. 127.Google Scholar
  7. 7.
    Fries, R., Aggen, A., and Womack, J.E., The bovine genome map, Mamm. Genome, 1993, vol. 4, pp. 405—428.CrossRefGoogle Scholar
  8. 8.
    Behl, J.D., Verma, N.K., Tyagi, N., et al., The major histocompatibility complex in Bovines: a review, ISRN Vet. Sci., 2012, рр. 1–12.
  9. 9.
    Paracha, H., Hussain, T., Tahir, M.Z., et al., Multifunctional DRB3, a MHC class II gene, as a useful biomarker in small ruminants: a review, J. Inf. Mol. Biol., 2015, vol. 3, no. 1, pp. 19—23. CrossRefGoogle Scholar
  10. 10.
    Subramani, K.V., Sankar, M., Raghunatha, R.R., et al., Association of genetic resistance to gastrointestinal nematodes and the polymorphism at CAHI-DQA1 exon 2, Int. J. Sci. Environ. Technol., 2016, vol. 5, no. 2, pp. 678—687.Google Scholar
  11. 11.
    Tarasyan, K.K., Sorokin, P.A., Kholodova, M.V., and Rozhnov, V.V., Major histocompatibility complex (MHC) in mammals and its importance for studies of rare species (with Felidae family as an example), Zh. Obshch. Biol., 2014, vol. 75, no. 4, pp. 302—314.Google Scholar
  12. 12.
    Kumar, S., Sangwan, M.L., Ahlawat, S., and Barwar, A., Polymorphism in DRB3 exon 2 by PCR-RFLP and its association with mastitis in Murrah baffaloes, Ind. J. Biotech., 2011, vol. 10, pp. 232—234.Google Scholar
  13. 13.
    Sommer, S., The importance of immune gene variability (MHC) in evolutionary ecology and conservation, Front. Zool., 2005, vol. 2, no. 16, pp. 1—18. CrossRefGoogle Scholar
  14. 14.
    Neronov, V.M., Karimova, T.Yu., and Lushchekina, A.A., Ecosystem approach and GAP analysis of the saiga population state in the North-West Pre-Caspian Region, Astrakh. Vestn. Ekol. Obraz., 2011, no. 2(18), pp. 151−157.Google Scholar
  15. 15.
    Neronov, V.M., Arylova, N.Yu., Dubinin, M.Yu., et al., Current state and prospects of preserving saiga antelope in Northwest Pre-Caspian region, Arid. Ecosyst., 2013, vol. 3, no. 2, pp. 57−64. CrossRefGoogle Scholar
  16. 16.
    Neronov, V.M., Lushchekina, A.A., Karimova, T.Y., and Arylova, N.Y., Population dynamics of a key steppe species in a changing world: the critically endangered saiga antelope, Eurasian Steppes: Ecological Problems and Livelihoods in a Changing World in Plant and Vegetation, no. 6, Werger M.J.A. and van Staalduinen M.A., Eds., Dordrecht: Springer-Verlag, 2012, chapter 12, pp. 335—357.
  17. 17.
    Soulé, M.E., Threshold for survival: maintaining fitness and evolutionary potential, in Conservation Biology: An Evolutionary-Ecologial Perspective, Soulé, M.E. and Wilcox, B.A., Eds., Sunderland: Sinauer, 1980, pp. 151—169.Google Scholar
  18. 18.
    Lynch, M. and Lande, R., The critical effective size for a genetically secure population, Anim. Conserv., 1998, vol. 1, pp. 70—72. CrossRefGoogle Scholar
  19. 19.
    Frankham, R., Bradshaw, C.J., and Brook, B.W., Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses, Biol. Conserv., 2014, vol. 170, pp. 56—63. CrossRefGoogle Scholar
  20. 20.
    Frankham, R., Bradshaw, C.J., and Brook, B.W., 50/500 rules need upward revision to 100/1000—response to Franklin et al., Biol. Conserv., 2014, vol. 176, p. 286. CrossRefGoogle Scholar
  21. 21.
    Bannikov, A.G., Zhirnov, L.V., Lebedeva, L.S., and Fandeev, A.A., Biologiya saigaka (Biology of Saiga Antelope), Moscow: Izd. S-kh. Lit., Zh., Plakatov, 1961.Google Scholar
  22. 22.
    Baryshnikov, G.F., Dmitrieva, E.L., Krakhmal’naya, T.V., and Sher, A.V., The origin, evolution, and systematics of saiga antelope, in Saigak: filogeniya, sistematika, ekologiya, okhrana i ispol’zovanie (Saiga Antelope: Phylogeny, Systematics, Ecology, Conservation, and Use), Sokolov, V.E. and Zhirnov, L.V., Eds., Moscow, 1998, pp. 9−20.Google Scholar
  23. 23.
    Campos, P.F., Kristensen, T., Orlando, L., et al., Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene, Mol. Ecol., 2010, vol. 19, no. 22, pp. 4863—4875. CrossRefGoogle Scholar
  24. 24.
    Baitursinov, K.K., Saiga antelope helminths in Kazakhstan, Vestn. Pedagog. Gos. Univ. im. S. Toraigyrova, Ser. Khim.—Biol., 2005, no. 2, pp. 67—81.Google Scholar
  25. 25.
    Baitursinov, K.K., Brief data on the biology and helminth infestation of saiga antelope (Saiga tatarica L., 1766) in Kazakhstan, Vestn. Kaz. Natl. Univ., Ser. Biol., 2009, no. 3(42), pp. 83—87.Google Scholar
  26. 26.
    Petrov, V.S., Saiga antelope helminths and their significance in epizootology by sheep worms, Extended Abstract of Cand. Sci. Dissertation, Moscow: Vsesoyuz. Inst. Gig. Sanit., 1985.Google Scholar
  27. 27.
    Grachev, Yu.A. and Bekenov, A.B., Mass death of saiga antelopes—about 12 thousand deaths, Saiga News, 2010, no. 11, pp. 2—3.Google Scholar
  28. 28.
    Sigurdardottir, S., Borsch, C., Gustafsson, K., and Andersson, L., Cloning and sequence analysis of 14 DBR alleles of the bovine major histocompatibility complex using the polymerase chain reaction, Anim. Genet., 1991, vol. 22, pp. 199—209.CrossRefGoogle Scholar
  29. 29.
    Mikko, S., Roed, K., Schmutz, S., and Andersson, L., Monomorphism and polymorphism at MHC DRB loci in domestic and wild ruminants, Immunol. Rev., 1999, vol. 167, pp. 169—178. CrossRefGoogle Scholar
  30. 30.
    Kennedy, L.J., Modrell, A., Groves, P., et al., Genetic diversity of the major histocompatibility complex class II in Alaskan caribou herds, Int. J. Immunogenet., 2010, vol. 38, pp. 109—119. CrossRefGoogle Scholar
  31. 31.
    Taylor, S.S., Jenkins, D.A., and Arcese, P., Loss of MHC and neutral variation in Peary caribou: genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions, PLoS One, 2012, vol. 7, no. 5, pp. 1—11. Google Scholar
  32. 32.
    Villesen, P., FaBox: an online toolbox for fasta sequences, Mol. Ecol. Notes, 2007, vol. 7, no. 6, pp. 965—968. CrossRefGoogle Scholar
  33. 33.
    Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564—567. CrossRefGoogle Scholar
  34. 34.
    Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725—2729. CrossRefGoogle Scholar
  35. 35.
    Bandelt, H.J., Forster, P., and Rohl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37—48. CrossRefGoogle Scholar
  36. 36.
    Doherty, P.C. and Zinkernagel, R.M., A biological role for the major histocompatibility antigens, Lancet, 1975, vol. 1, no. 7922, pp. 1406—1409.CrossRefGoogle Scholar
  37. 37.
    Takahata, N. and Nei, M., Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci, Genetics, 1990, vol. 124, no. 4, pp. 967—978.Google Scholar
  38. 38.
    Wakeland, E.K., Boehme, S., She, J.X., et al., Ancestral polymorphisms of MHC class II genes: divergent allele advantage, Immunol. Res., 1990, vol. 9, no. 2, pp. 115—122. CrossRefGoogle Scholar
  39. 39.
    Barmann, E.V., Rossner, G.E., and Worheide, G., A revised phylogeny of Antilopini (Bovidae, Artiodactyla) using combined mitochondrial and nuclear genes, Mol. Phylogenet. Evol., 2013, vol. 67, pp. 484−493. CrossRefGoogle Scholar
  40. 40.
    Khademi, T.G., Evaluation of phylogenetic relationships of Antilopini and Oreotragini tribes (Bovidae: Artiodactyla) based on complete mitochondrial genomes, J. Wildlife Biodiv., 2017, vol. 1, no. 1, pp. 1—11. Google Scholar
  41. 41.
    Bekenov, A.B., Pole, S.B., Pole, S.B., et al., Saiga death from diseases and parasitic invasions, in Saigak: filogeniya, sistematika, ekologiya, okhrana i ispol’zovanie (Saiga: Phylogeny, Systematics, Ecology, Conservation, and Use), Sokolov, V.E. and Zhirnov, L.V., Eds., Moscow, 1998, pp. 247—251.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • K. K. Tarasyan
    • 1
  • P. A. Sorokin
    • 1
    Email author
  • N. V. Kashinina
    • 1
  • M. V. Kholodova
    • 1
    • 2
  1. 1.Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscow,Russia
  2. 2.Department of Zoology, Tomsk State UniversityTomskRussia

Personalised recommendations