Advertisement

Russian Journal of Genetics

, Volume 55, Issue 2, pp 144–153 | Cite as

Comparative Genomic Analysis of the Virulence Plasmid from Salmonella enterica Subspecies enterica Serovar Enteritidis

  • A. V. RakovEmail author
  • F. N. Shubin
REVIEWS AND THEORETICAL ARTICLES
  • 8 Downloads

Abstract

Some serovars of Salmonella enterica subspecies enterica contain serovar-specific virulence plasmids. The availability of complete nucleotide sequences of S. Enteritidis virulence plasmid (pSEV) made it possible to trace its evolutionary changes. We studied the virulence plasmids of S. Enteritidis from different strains to reveal the evolution of pSEV and determine the ancestral plasmid and its exact size. Comparison of all available sequences of S. Enteritidis virulence plasmids showed that they were conservative and limited in size. These sizes ranged from 59 336 to 59 374 bp, and more than half of the plasmids had a size of 59 372 bp. The plasmid gene composition is conserved and consists of 81 open reading frames with small pseudogenization of plasmids, the sizes of which differed from 59 372 bp. It was suggested that the prototype of S. Enteritidis pSEV virulence plasmid was a plasmid from the SEJ-like ancestral strain with a size of 59 372 bp and the same nucleotide and gene composition as in S. Enteritidis strain SEJ. The sequence of this plasmid can be used as a reference for all future studies on the S. Enteritidis virulence plasmid.

Keywords:

Salmonella Enteritidis Salmonella virulence plasmid plasmid sequencing genomics 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Hendriksen, R.S., Vierira, A.R., Karlsmose, S., et al., Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007, Foodborne Pathog. Dis., 2011, vol. 8, no. 8, pp. 887—900.  https://doi.org/10.1089/fpd.2010.0787 CrossRefGoogle Scholar
  2. 2.
    Popoff, M.Y., Miras, I., Coynault, C., et al., Molecular relationships between virulence plasmids of Salmonella serotypes typhimurium and dublin and large plasmids of other Salmonella serotypes, Ann. Microbiol. (Paris), 1984, vol. 135A, no. 3, pp. 389—398.Google Scholar
  3. 3.
    Gulig, P.A., Danbara, H., Guiney, D.G., et al., Molecular analysis of spv virulence genes of the Salmonella virulence plasmids, Mol. Microbiol., 1993, vol. 7, no. 6, pp. 825—830.CrossRefGoogle Scholar
  4. 4.
    Chu, C., Hong, S.F., Tsai, C., et al., Comparative physical and genetic maps of the virulence plasmids of Salmonella enterica serovars typhimurium, enteritidis, choleraesuis, and dublin, Infect. Immun., 1999, vol. 67, no. 5, pp. 2611—2614.Google Scholar
  5. 5.
    Rotger, R. and Casadesús, J., The virulence plasmids of Salmonella, Int. Microbiol., 1999, vol. 2, no. 3, pp. 177—184.Google Scholar
  6. 6.
    Sengupta, M. and Austin, S., Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria, Infect. Immunol., 2011, vol. 79, no. 7, pp. 2502—2509.  https://doi.org/10.1128/IAI.00127-11 CrossRefGoogle Scholar
  7. 7.
    Chu, C., Feng, Y., Chien, A.C., et al., Evolution of genes on the Salmonella virulence plasmid phylogeny revealed from sequencing of the virulence plasmids of S. enterica serotype Dublin and comparative analysis, Genomics, 2008, vol. 92, no. 5, pp. 339—343.  https://doi.org/10.1016/j.ygeno.2008.07.010 CrossRefGoogle Scholar
  8. 8.
    Carattoli, A., Zankari, E., García-Fernández, A., et al., In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing, Antimicrob. Agents Chemother., 2014, vol. 58, no. 7, pp. 3895—3903.  https://doi.org/10.1128/AAC.02412-14 CrossRefGoogle Scholar
  9. 9.
    Guerra, B., Soto, S., Helmuth, R., et al., Characterization of a self-transferable plasmid from Salmonella enterica serotype typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes, Antimicrob. Agents Chemother., 2002, vol. 46, no. 9, pp. 2977—2981.CrossRefGoogle Scholar
  10. 10.
    Rodríguez, I., Guerra, B., Mendoza, M.C., et al., pUO-SeVR1 is an emergent virulence-resistance complex plasmid of Salmonella enterica serovar Enteritidis, J. Antimicrob. Chemother., 2011, vol. 66, no. 1, pp. 218—220.  https://doi.org/10.1093/jac/dkq386 CrossRefGoogle Scholar
  11. 11.
    García, V., García, P., Rodríguez, I., et al., The role of IS26 in evolution of a derivative of the virulence plasmid of Salmonella enterica serovar Enteritidis which confers multiple drug resistance, Infect. Genet. Evol., 2016, vol. 45, pp. 246—249.  https://doi.org/10.1016/j.meegid.2016.09.008 CrossRefGoogle Scholar
  12. 12.
    Rychlik, I., Gregorova, D., and Hradecka, H., Distribution and function of plasmids in Salmonella enterica, Vet. Microbiol., 2006, vol. 112, no. 1, pp. 1—10.CrossRefGoogle Scholar
  13. 13.
    Schnoes, A.M., Brown, S.D., Dodevski, I., et al., Annotation error in public databases: misannotation of molecular function in enzyme superfamilies, PLoS Comput. Biol., 2009, vol. 5, no. 12. e1000605.  https://doi.org/10.1371/journal.pcbi.1000605 CrossRefGoogle Scholar
  14. 14.
    Feng, Y., Liu, J., Li, Y.G., et al., Inheritance of the Salmonella virulence plasmids: mostly vertical and rarely horizontal, Infect. Genet. Evol., 2012, vol. 12, no. 5, pp. 1058—1063.  https://doi.org/10.1016/j.meegid.2012.03.004 CrossRefGoogle Scholar
  15. 15.
    Bishop-Lilly, K.A., Frey, K.G., Daligault, H.E., et al., Complete genome sequence of Salmonella enterica subsp. enterica serovar Enteritidis Strain SEJ, Genome Announc., 2014, vol. 2, no. 5. e01084–14.  https://doi.org/10.1128/genomeA.01084-14 Google Scholar
  16. 16.
    Ogunremi, D., Devenish, J., Amoako, K., et al., High resolution assembly and characterization of genomes of Canadian isolates of Salmonella enteritidis, BMC Genomics, 2014, vol. 15, p. 713.  https://doi.org/10.1186/1471-2164-15-713 CrossRefGoogle Scholar
  17. 17.
    Rehman, M.A., Ziebell, K., Nash, J.H., et al., Complete genome sequences of 16 Canadian strains of Salmonella enterica subsp. enterica serovar Enteritidis, Genome Announc., 2014, vol. 2, no. 2. e00330—14.  https://doi.org/10.1128/genomeA.00330-14 Google Scholar
  18. 18.
    Feasey, N.A., Hadfield, J., Keddy, K.H., et al., Distinct Salmonella enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings, Nat. Genet., 2016, vol. 48, no. 10, pp. 1211—1217.  https://doi.org/10.1038/ng.3644 CrossRefGoogle Scholar
  19. 19.
    Zhang, S., Yin, Y., Jones, M.B., et al., Salmonella serotype determination utilizing high-throughput genome sequencing data, J. Clin. Microbiol., 2015, vol. 53, no. 5, pp. 1685—1692.  https://doi.org/10.1128/JCM.00323-15 CrossRefGoogle Scholar
  20. 20.
    Besemer, J., Lomsadze, A., and Borodovsky, M., GeneMarkS: a self-training method for prediction of gene starts in microbial genomes: implications for finding sequence motifs in regulatory regions, Nucleic Acids Res., 2001, vol. 29, no. 12, pp. 2607—2618.CrossRefGoogle Scholar
  21. 21.
    Hyatt, D., Chen, G.L., Locascio, P.F., et al., Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinf., 2010, vol. 11, p. 119.  https://doi.org/10.1186/1471-2105-11-119 CrossRefGoogle Scholar
  22. 22.
    Bocs, S., Cruveiller, S., Vallenet, D., et al., AMIGene: Annotation of MIcrobial Genes, Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3723—3726.CrossRefGoogle Scholar
  23. 23.
    Aziz, R.K., Bartels, D., Best, A.A., et al., The RAST Server: rapid annotations using subsystems technology, BMC Genomics, 2008, vol. 9, p. 75.  https://doi.org/10.1186/1471-2164-9-75 CrossRefGoogle Scholar
  24. 24.
    Ederveen, T.H., Overmars, L., and van Hijum, S.A., Reduce manual curation by combining gene predictions from multiple annotation engines, a case study of start codon prediction, PLoS One, 2013, vol. 8, no. 5. e63523.  https://doi.org/10.1371/journal.pone.0063523 CrossRefGoogle Scholar
  25. 25.
    Wall, M.E., Raghavan, S., Cohn, J.D., et al., Genome majority vote improves gene predictions, PLoS Comput. Biol., 2011, vol. 7, no. 11. e1002284.  https://doi.org/10.1371/journal.pcbi.1002284 CrossRefGoogle Scholar
  26. 26.
    Siguier, P., Perochon, J., Lestrade, L., et al., ISfinder: the reference centre for bacterial insertion sequences, Nucleic Acids Res., 2006, vol. 34, pp. D32—D36.  https://doi.org/10.1093/nar/gkj014 CrossRefGoogle Scholar
  27. 27.
    Zankari, E., Hasman, H., Cosentino, S., et al., Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother., 2012, vol. 67, no. 11, pp. 2640—2644.  https://doi.org/10.1093/jac/dks261 CrossRefGoogle Scholar
  28. 28.
    Darling, A.C., Mau, B., Blattner, F.R., et al., Mauve: multiple alignment of conserved genomic sequence with rearrangements, Genome Res., 2004, vol. 14, no. 7, pp. 1394—1403.  https://doi.org/10.1101/gr.2289704 CrossRefGoogle Scholar
  29. 29.
    Lassmann, T., Frings, O., and Sonnhammer, E.L., Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features, Nucleic Acids Res., 2009, vol. 37, no. 3, pp. 858—865.  https://doi.org/10.1093/nar/gkn1006 CrossRefGoogle Scholar
  30. 30.
    Altschul, S.F., Gish, W., Miller, W., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, no. 3, pp. 403—410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  31. 31.
    Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725—2729.  https://doi.org/10.1093/molbev/mst197 CrossRefGoogle Scholar
  32. 32.
    Russell, D.A., Bowman, C.A., and Hatfull, G.F., Genome sequence of Salmonella enterica subsp. enterica strain Durban, Genome Announc., 2014, vol. 2, no. 3. e00399–14.  https://doi.org/10.1128/genomeA.00399-14 CrossRefGoogle Scholar
  33. 33.
    Langridge, G.C., Fookes, M., Connor, T.R., et al., Patterns of genome evolution that have accompanied host adaptation in Salmonella, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 3, pp. 863—868.  https://doi.org/10.1073/pnas.1416707112 CrossRefGoogle Scholar
  34. 34.
    Li, Q., Wang, X., Yin, K., et al., Genetic analysis and CRISPR typing of Salmonella enterica serovar Enteritidis from different sources revealed potential transmission from poultry and pig to human, Int. J. Food Microbiol., 2018, vol. 266, pp. 119—125.  https://doi.org/10.1016/j.ijfoodmicro.2017.11.025 CrossRefGoogle Scholar
  35. 35.
    Grépinet, O., Rossignol, A., Loux, V., et al., Genome sequence of the invasive Salmonella enterica subsp. enterica serotype enteritidis strain LA5, J. Bacteriol., 2012, vol. 194, no. 9, pp. 2387—2388.  https://doi.org/10.1128/JB.00256-12 CrossRefGoogle Scholar
  36. 36.
    Allard, M.W., Luo, Y., Strain, E., et al., On the evolutionary history, population genetics and diversity among isolates of Salmonella enteritidis PFGE pattern JEGX01.0004, PLoS One, 2013, vol. 8, no. 1. e55254.  https://doi.org/10.1371/journal.pone.0055254 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Somov Institute of Epidemiology and MicrobiologyVladivostokRussia

Personalised recommendations