Advertisement

Russian Journal of Genetics

, Volume 55, Issue 2, pp 232–237 | Cite as

DNA Methylation at the Schizophrenia and Intelligence GWAS-Implicated MIR137HG Locus May Be Associated with Disease and Cognitive Functions

  • M. V. AlfimovaEmail author
  • N. V. Kondratiev
  • A. K. Golov
  • V. E. Golimbet
HUMAN GENETICS

Abstract

The largest genome-wide association studies have identified schizophrenia and intelligence associated variants in the MIR137HG locus containing genes encoding microRNA-137 and microRNA-2682. In the present study, we investigated DNA methylation in the MIR137HG intragenic CpG island (CGI) in the peripheral blood of 44 patients with schizophrenia and 50 healthy controls. The CGI included the entire MIR137 gene and the region adjacent to the 5'-end of MIR2682. The aim of the study was to examine the relationship of the CGI methylation with schizophrenia and cognitive functioning. The methylation level of 91 CpG located in the selected region was established for each participant by means of single-molecule real-time bisulfite sequencing. All subjects completed the battery of neuropsychological tests. We found that the CGI was hypomethylated in both groups, except for one site—CpG (chr1: 98 511 049), with significant interindividual variability in methylation. A higher level of methylation of this CpG was seen in male patients and was associated with a decrease in the cognitive index in the combined sample of patients and controls. Our data suggest that further investigation of mechanisms that regulate the MIR137 and MIR2682 genes expression might help to understand the molecular basis of cognitive deficits in schizophrenia.

Keywords:

DNA methylation microRNA schizophrenia cognitive deficit SMRT-BS 

Notes

ACKNOWLEDGMENTS

The present study was supported by the Russian Science Foundation (project no. 16-15-00056).

AUTHOR CONTRIBUTIONS

M.V. Alfimova and N.V. Kondratiev contributed equally to this study.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study. All enrolled individuals signed an informed consent to participate in the study, donated blood for DNA extraction, and completed a battery of neuropsychological tests and forms for collection of sociodemographic data. The study was approved by the Ethics Committee of the Mental Health Research Center (Moscow, Russia).

REFERENCES

  1. 1.
    Seidman, L.J. and Mirsky, A.F., Evolving notions of schizophrenia as a developmental neurocognitive disorder, J. Int. Neuropsychol. Soc., 2017, vol. 23, no. 9–10, pp. 881—892.  https://doi.org/10.1017/S1355617717001114 CrossRefGoogle Scholar
  2. 2.
    Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, Genome-wide association study identifies five new schizophrenia loci, Nat. Genet., 2011, vol. 43, no. 10, pp. 969—976.  https://doi.org/10.1038/ng.940
  3. 3.
    Ripke, S., O’Dushlaine, C., Chambert, K., et al., Genome-wide association analysis identifies 14 new risk loci for schizophrenia, Nat. Genet., 2013, vol. 45, no. 10, pp. 1150—1159.  https://doi.org/10.1038/ng.2742 CrossRefGoogle Scholar
  4. 4.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium, Biological insights from 108 schizophrenia-associated genetic loci, Nature, 2014, vol. 511, pp. 421—427.  https://doi.org/10.1038/nature13595
  5. 5.
    Li, Z., Chen, J., Yu, H., et al., Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia, Nat. Genet., 2017, vol. 49, no. 11, pp. 1576—1583.  https://doi.org/10.1038/ng.3973.
  6. 6.
    Duan, J., Shi, J., Fiorentino, A., et al., A Rare functional noncoding variant at the GWAS-implicated MIR137/MIR2682 locus might confer risk to schizophrenia and bipolar disorder, Am. J. Hum. Genet., 2014, vol. 95, no. 6, pp. 744—753.  https://doi.org/10.1016/j.ajhg.2014.11.001 CrossRefGoogle Scholar
  7. 7.
    Cummings, E., Donohoe, G., Hargreaves, A., et al., Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137, Neurosci. Lett., 2013, vol. 532, pp. 33—38.  https://doi.org/10.1016/j.neulet.2012.08.065 CrossRefGoogle Scholar
  8. 8.
    Kuswanto, C.N., Sum, M.Y., Qiu, A., et al., The impact of genome wide supported microRNA-137 (MIR137) risk variants on frontal and striatal white matter integrity, neurocognitive functioning, and negative symptoms in schizophrenia, Am. J. Med. Genet., Part B, 2015, vol. 168B, pp. 317—326.  https://doi.org/10.1002/ajmg.b.32314 Google Scholar
  9. 9.
    Van Erp, T.G.M., Guella, I., Vawter, M.P., et al., Schizophrenia miR-137 locus risk genotype is associated with DLPFC hyperactivation, Biol. Psychiatry, 2014, vol. 75, no. 5, pp. 398—405.  https://doi.org/10.1016/j.biopsych.2013.06.016 CrossRefGoogle Scholar
  10. 10.
    Green, M.J., Cairns, M.J., Wu, J., et al., Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia, Mol. Psychiatry, 2013, vol. 18, no. 7, pp. 774—780.  https://doi.org/10.1038/mp.2012.84 CrossRefGoogle Scholar
  11. 11.
    Hill, W.D., Marioni, R.E., Maghzian, O., et al., A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence, Mol. Psychiatry, 2018.  https://doi.org/10.1038/s41380-017-0001-5
  12. 12.
    Hauberg, M.E., Roussos, P., Grove, J., et al., Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants, JAMA Psychiatry, 2016, vol. 73, no. 4, pp. 369—377.  https://doi.org/10.1001/jamapsychiatry.2015.3018 CrossRefGoogle Scholar
  13. 13.
    Olde Loohuis, N.F., Nadif Kasri, N., Glennon, J.C., et al., The schizophrenia risk gene MIR137 acts as a hippocampal gene network node orchestrating the expression of genes relevant to nervous system development and function, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, vol. 73, pp. 109—118.  https://doi.org/10.1016/j.pnpbp.2016.02.009 CrossRefGoogle Scholar
  14. 14.
    Panwar, B., Omenn, G.C., and Guan, Y., miRmine: a database of human miRNA expression profiles, Bioinformatics, 2017, vol. 33, no. 10, pp. 1554—1560.  https://doi.org/10.1093/bioinformatics/btx019 Google Scholar
  15. 15.
    Guella, I., Sequeira, A., Rollins, B., et al., Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex, J. Psychiatr. Res., 2013, vol. 47, no. 9, pp. 1215—1221.  https://doi.org/10.1016/j.jpsychires.2013.05.021 CrossRefGoogle Scholar
  16. 16.
    Warburton, A., Breen, G., Rujescu, D., et al., Characterization of a REST-regulated internal promoter in the schizophrenia genome-wide associated gene MIR137, Schizophr. Bull., 2015, vol. 41, no. 3, pp. 698—707.  https://doi.org/10.1093/schbul/sbu117 CrossRefGoogle Scholar
  17. 17.
    Lezheiko, T.V. and Alfimova, M.V., Epigenetic research of cognitive deficiency in schizophrenia: some methodological copnsiderations, Korsakov J. Neurol. Psychiatry, 2017, vol. 117, no. 10, pp. 76—80.  https://doi.org/10.17116/jnevro201711710176-80 Google Scholar
  18. 18.
    Yang, Y., Sebra, R., Pullman, B.S., et al., Quantitative and multiplexed DNA methylation analysis using long-read Single-Molecule Real-Time Bisulfite Sequencing (SMRT-BS), BMC Genomics, 2015, vol. 16, p. 350.  https://doi.org/10.1186/s12864-015-1572-7 CrossRefGoogle Scholar
  19. 19.
    Brownie, J., Shawcross, S., Theaker, J., et al., The elimination of primer-dimer accumulation in PCR, Nucleic Acids Res., 1997, vol. 25, no. 16, pp. 3235—3241.CrossRefGoogle Scholar
  20. 20.
    Mendizabal, I., Zeng, J., Keller, T.E., and Yi, S.V., Body-hypomethylated human genes harbor extensive intragenic transcriptional activity and are prone to cancer-associated dysregulation, Nucleic Acids Res., 2017, vol. 45, no. 8, pp. 4390—4400.  https://doi.org/10.1093/nar/gkx020 Google Scholar
  21. 21.
    Johnson, W., Bey, R., Burton, J., et al., Use of Pearson’s Chi-square for testing equality of percentile profiles across multiple populations, Open J. Stat., 2015, vol. 5, pp. 412—420.  https://doi.org/10.4236/ojs.2015.55043 CrossRefGoogle Scholar
  22. 22.
    Costa, L.A., Silva, I.C.B., Mariz, B., et al., Influence of smoking on methylation and hydroxymethylation levels in global DNA and specific sites of KRT14, KRT19, MIR-9-3 and MIR-137 genes of oral mucosa, Arch. Oral. Biol., 2016, vol. 72, pp. 56—65.  https://doi.org/10.1016/j.archoralbio.2016.08.013 CrossRefGoogle Scholar
  23. 23.
    Long, H.K., King, H.W., Patient, R.K., et al., Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved, Nucleic Acids Res., 2016, vol. 44, no. 14, pp. 6693—6706.  https://doi.org/10.1093/nar/gkw258 CrossRefGoogle Scholar
  24. 24.
    Illingworth, R., Kerr, A., DeSousa, D., et al., A novel CpG island set identifies tissue-specific methylation at developmental gene loci, PLoS Biol., 2008, vol. 6. e22.  https://doi.org/10.1371/journal.pbio.0060022 CrossRefGoogle Scholar
  25. 25.
    Jeziorska, D.M., Murray, R.J.S., De Gobbi, M., et al., DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 36, pp. E7526—E7535.  https://doi.org/10.1073/pnas.1703087114 CrossRefGoogle Scholar
  26. 26.
    Busche, S., Shao, X., Caron, M., et al., Population whole-genome bisulfite sequencing across two tissues highlights the environment as the principal source of human methylome variation, Genome Biol., 2015, vol. 16, p. 290.  https://doi.org/10.1186/s13059-015-0856-1 CrossRefGoogle Scholar
  27. 27.
    Ziller, M.J., Muller, F., Liao, J., et al., Genomic distribution and inter-sample variation of non-CpG methylation across human cell types, PLoS Genet., 2011, vol. 7, no. 12. e1002389.  https://doi.org/10.1371/journal.pgen.1002389 CrossRefGoogle Scholar
  28. 28.
    Patil, V., Ward, R.L., and Hesson, L.B., The evidence for functional non-CpG methylation in mammalian cells, Epigenetics, 2014, vol. 9, no. 6, pp. 823—828.  https://doi.org/10.4161/epi.28741 CrossRefGoogle Scholar
  29. 29.
    Singer, M., Kosti, I., Pachter, L., and Mandel-Gutfreund, Y., A diverse epigenetic landscape at human exons with implication for expression, Nucleic Acids Res., 2015, vol. 43, no. 7, pp. 3498—3508.  https://doi.org/10.1093/nar/gkv153 CrossRefGoogle Scholar
  30. 30.
    Gutierrez-Arcelus, M., Ongen, H., Lappalainen, T., et al., Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing, PLoS Genet., 2015, vol. 11, no. 1. e1004958.  https://doi.org/10.1371/journal.pgen.1004958 CrossRefGoogle Scholar
  31. 31.
    Blattler, A. and Farnham, P.J., Cross-talk between site-specific transcription factors and DNA methylation states, J. Biol. Chem., 2013, vol. 288, no. 48, pp. 34287—34294.  https://doi.org/10.1074/jbc.R113.512517 CrossRefGoogle Scholar
  32. 32.
    Messeguer, X., Escudero, R., Farré, D., et al., PROMO: detection of known transcription regulatory elements using species-tailored searches, Bioinformatics, 2002, vol. 18, no. 2, pp. 333—334.CrossRefGoogle Scholar
  33. 33.
    Kulakovskiy, I.V., Vorontsov, I.E., Yevshin, I.S., et al., HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models, Nucleic Acids Res., 2016, vol. 44(D1), pp. D116—D125.  https://doi.org/10.1093/nar/gkv1249 CrossRefGoogle Scholar
  34. 34.
    Hong, S.J., Lardaro, T., Oh, M.S., et al., Regulation of the noradrenaline neurotransmitter phenotype by the transcription factor AP-2β, J. Biol. Chem., 2008, vol. 283, no. 24, pp. 16860—16867.  https://doi.org/10.1074/jbc.M709106200 CrossRefGoogle Scholar
  35. 35.
    Schabram, I., Eggermann, T., Siegel, S.J., et al., Neuropsychological correlates of transcription factor AP-2Beta, and its interaction with COMT and MAOA in healthy females, Neuropsychobiology, 2013, vol. 68, no. 2, pp. 79—90.  https://doi.org/10.1159/000350997 CrossRefGoogle Scholar
  36. 36.
    Liu, Y., Toh, H., Sasaki, H., et al., An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence, Genes Dev., 2012, vol. 26, no. 21, pp. 2374—2379.  https://doi.org/10.1101/gad.202200.112 CrossRefGoogle Scholar
  37. 37.
    Zuo, Zh., Roy, B., Chang, Y.K., et al., Measuring quantitative effects of methylation on transcription factor-DNA binding affinity, Sci. Adv., 2017, vol. 3, no. 11. eaao1799.  https://doi.org/10.1126/sciadv.aao1799
  38. 38.
    Anvar, Z., Cammisa, M., Riso, V., et al., ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells, Nucleic Acids Res., 2016, vol. 44, no. 3, pp. 1118—1132.  https://doi.org/10.1093/nar/gkv1059 CrossRefGoogle Scholar
  39. 39.
    Swathy, B. and Banerjee, M., Understanding epigenetics of schizophrenia in the backdrop of its antipsychotic drug therapy, Epigenomics, 2017, vol. 9, no. 5, pp. 721—736.  https://doi.org/10.2217/epi-2016-0106 CrossRefGoogle Scholar
  40. 40.
    Swathy, B., Saradalekshmi, K.R., Nair, I.V., et al., Understanding the influence of antipsychotic drugs on global methylation events and its relevance in treatment response, Epigenomics, 2018, vol. 10, no. 3, pp. 233—247.  https://doi.org/10.2217/epi-2017-0086 CrossRefGoogle Scholar
  41. 41.
    Ferreira, C.D., de Souza, M.G.D., Fernández-Calvo, B., et al., Neurocognitive functions in schizophrenia: a systematic review of the effects of typical and atypical antipsychotic drugs, Psychol. Neurosci., 2016, vol. 9, no. 1, pp. 12—31.  https://doi.org/10.1037/pne0000045 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • M. V. Alfimova
    • 1
    Email author
  • N. V. Kondratiev
    • 1
  • A. K. Golov
    • 1
  • V. E. Golimbet
    • 1
  1. 1.Mental Health Research CenterMoscowRussia

Personalised recommendations