Advertisement

Russian Journal of Genetics

, Volume 55, Issue 1, pp 100–104 | Cite as

Phylogenetic Analysis of Kyrgyz Horse Using 17 Microsatellite Markers

  • Zh. T. IsakovaEmail author
  • B. I. Toktosunov
  • V. N. KipenEmail author
  • L. V. Kalinkova
  • E. T. Talaibekova
  • N. M. Aldasheva
  • A. H. Abdurasulov
ANIMAL GENETICS
  • 1 Downloads

Abstract—The results of this study are the first in assessing the subpopulation subdivision of the Kyrgyz horse breed. Horse genotyping was performed using 17 microsatellite loci recommended by the International Society for Animal Genetics. On the basis of the results of genotyping using the AMOVA method, paired genetic distances for horses of the Kyrgyz breed in relation to 31 other breeds were calculated. It is shown that horses of the Kyrgyz breed are genetically the closest to the Welsh pony and Warmblood horse.

Keywords:

Kyrgyz horse breed microsatellite markers genetic diversity phylogenetic analysis 

Notes

REFERENCES

  1. 1.
    Voronkova, V.N., Evaluation of the genetic diversity of horses from Altai—Sayan region using nuclear and mitochondrial DNA markers: Extended Abstract of Cand. Sci. Dissertation, Inst. Obshch. Genet., Moscow, 2012.Google Scholar
  2. 2.
    Warmuth, V., Eriksson, A., Bower, M.A., et al., European domestic horses originated in two holocene refugia, PLoS One, 2011, vol. 30, pp. 1–7. e18194.  https://doi.org/10.1371/journal.pone.0018194
  3. 3.
    Livanova, T.K. and Livanova, M.A., Vse o loshadi (All about Horses), Moscow: AST-Press, 2002.Google Scholar
  4. 4.
    Molecular genetic characterization of animal genetic resources, FAO Animal Production and Health Guidelines, no. 9. FAO, 2011.Google Scholar
  5. 5.
    Stolpovskii, Yu.A., The concept and principles of genetic monitoring for the in situ conservation of domesticated animal breeds, S.-kh. Biol., 2010, no. 6, pp. 3–8.Google Scholar
  6. 6.
    Olsen, S.L., Early horse domestication on the Eurasian steppe, Documenting Domestication: New Genetics and Archaeological Paradigms, Zeder, M.A., Emshwiller, E., Smith, B.D., and Bradley, D.G., Eds., Univ. California Press, 2006, рр. 245–269.Google Scholar
  7. 7.
    Vilà, C., Leonard, J.A., Götherström, S., et al., Widespread origins of domestic horse lineages, Science, 2001, vol. 291, no. 5503, pp. 474–477.  https://doi.org/10.1126/science.291.5503.474 CrossRefGoogle Scholar
  8. 8.
    Jansen, T., Foster, P., Levine, M.A., et al., Mitochondrial DNA and the origins of the domestic horse, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 16, pp. 10905–10910.  https://doi.org/10.1073/pnas.152330099 CrossRefGoogle Scholar
  9. 9.
    Ripar, Zh., Uatto, S., and Perez, S., Kyrgyzskaya loshad’, sokhraneniye i ispol’zovaniye skachki na vynoslivost’ i ekoturizm: prakticheskoye ukazaniye (Kyrgyz Horse, Conservation and Usage of Endurance Racing and Ecotourism: Practical Instruction), Bishkek, 2007.Google Scholar
  10. 10.
    Isakova, Zh.T., Toktosunov, B.I., Kipen’, V.N., et al., Genetic portrait of the Kyrgyz horse, Konevod. Konnyi Sport, 2018, no. 1, pp. 21–23.Google Scholar
  11. 11.
    Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, no. 28, pp. 2537—2539.  https://doi.org/10.1093/bioinformatics/bts460
  12. 12.
    Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945–959.Google Scholar
  13. 13.
    Hammer, Q., Harper, A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, no. 1, pp. 1—9.Google Scholar
  14. 14.
    Francis, R.M., POPHELPER: an R package and web app to analyse and visualize population structure, Mol. Ecol. Res., 2017, vol. 17, pp. 27–32.  https://doi.org/10.1111/1755-0998.12509 CrossRefGoogle Scholar
  15. 15.
    Excoffier, L., Smouse, P.E., and Quattro, J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, 1992, vol. 131, pp. 479–491.Google Scholar
  16. 16.
    Van De Goor, L.H.P., Panneman, H., and Van Haeringen, W.A., A proposal for standardization in forensic equine DNA typing: allele nomenclature for 17 equine-specific STR loci, Anim. Genet., 2010, vol. 41, no. 2, pp. 122–127.  https://doi.org/10.1111/j.1365-2052.2009.01975.x CrossRefGoogle Scholar
  17. 17.
    Zharkikh, A., Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: 1. Four taxa with a molecular clock, Mol. Biol. Evol., 1992, vol. 9, no. 6, pp. 1119–1147.  https://doi.org/10.1093/oxfordjournals.molbev.a040782 Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • Zh. T. Isakova
    • 1
    Email author
  • B. I. Toktosunov
    • 2
  • V. N. Kipen
    • 3
    Email author
  • L. V. Kalinkova
    • 4
  • E. T. Talaibekova
    • 1
  • N. M. Aldasheva
    • 1
  • A. H. Abdurasulov
    • 2
  1. 1.Institute of Molecular Biology and MedicineBishkekKyrgyzstan
  2. 2.Institute of Biotechnology, National Academy of SciencesBishkekKyrgyzstan
  3. 3.Institute of Genetics and Cytology NAS of BelarusMinskBelarus
  4. 4.All-Russian Research Institute of Horse BreedingDivovoRussia

Personalised recommendations