Advertisement

Russian Journal of Genetics

, Volume 55, Issue 1, pp 35–44 | Cite as

Comparative Analysis of Genotyping Methods for Bacillus anthracis

  • E. I. EremenkoEmail author
  • A. G. Ryazanova
  • S. V. Pisarenko
  • L. Yu. Aksenova
  • O. V. Semenova
  • E. A. Koteneva
  • O. I. Tsygankova
  • D. A. Kovalev
  • T. M. Golovinskaya
  • D. K. Chmerenko
  • A. N. Kulichenko
GENETICS OF MICROORGANISMS

Abstract

Genetic typing of the anthrax causative agent is used in epidemiological investigations of infection outbreaks and serves as a tool for studying the evolution of this pathogenic species. Analytical, technical, and economic possibilities of the most common modern methods of genetic typing of B. anthracis have been studied on the basis of our own and published data. It was established that canSNP genotyping distinguishes 10 genotypes among 23 strains of B. anthracis with a diversity index DI of 0.8261. DI for MLST is no more than 0.5495–0.5790, depending on the sample of strains. DI for MLVA15, 25, and 31 is the same and equal to 0.9881. SNP analysis of the core region of genomes of 181 strains provides the highest discrimination (DI = 1). MVLST with a DI of 0.9960, like SNR analysis, reveals differences between genotypes of isolates from the same outbreak. CanSNP13 genotyping is quite sufficient as a preliminary stage of genotyping for the separation of strains into the main genetic lines. MLST of B. anthracis is impractical owing to low resolution and laboriousness, and MVLST, despite its high resolution, is impractical owing to the length and laboriousness of the study. The identity of isolates from the same anthrax outbreak can be confirmed using MLVA15–31; the subtle differences between them are the methods of SNR and SNP analysis of the core region of the genome.

Keywords:

Bacillus anthracis genetic typing diversity index 

Notes

REFERENCES

  1. 1.
    Andersen, G.L., Simchock, J.M., and Wilson, K.H., Identification of a region of genetic variability among Bacillus anthracis strains and related species, J. Bacteriol., 1996, vol. 178, no. 2, pp. 377—384.CrossRefGoogle Scholar
  2. 2.
    Keim, P., Price, L.B., Klevytska, A.M., et al., Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis, J. Bacteriol., 2000, vol. 182, no. 10, pp. 2928—2936.CrossRefGoogle Scholar
  3. 3.
    Le Flèche, P., Hauck, Y., Onteniente, L., et al., A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis, BMC Microbiol., 2001, vol. 1, no. 2. http://www.biomedcentral.com/1471-2180/1/2.Google Scholar
  4. 4.
    Lista, F., Faggioni, G., Valjevac, S., et al., Genotyping of Bacillus anthracis strains based on automated capillary 25-loci multiple locus variable-number tandem repeats analysis, BMC Microbiol., 2006, vol. 6, no. 33, pp. 1—14.  https://doi.org/10.1186/1471-2180-6-33 CrossRefGoogle Scholar
  5. 5.
    Beyer, W., Bellan, S., Eberle, G., et al., Distribution and molecular evolution of Bacillus anthracis genotypes in Namibia, PLoS Negl. Trop. Dis., 2012, vol. 6, no. 3. pp. 1—12.CrossRefGoogle Scholar
  6. 6.
    Thierry, S. Tourterel, C., Le Fleche, P., et al., Genotyping of French Bacillus anthracis strains based on 31-loci multi locus VNTR analysis: epidemiology, marker evaluation, and update of the internet genotype database, PLoS One, 2014, vol. 9, no. 6. 95131.  https://doi.org/10.1371/journal.pone.0095131 CrossRefGoogle Scholar
  7. 7.
    Hoffmaster, A.R., Fitzgerald, C.C., Ribot, E., et al., Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, united states, Emerging Infect. Dis., 2002, vol. 8, no. 10, pp. 1111—1116.CrossRefGoogle Scholar
  8. 8.
    Fouet, A., Smith, K.L., Keys, C., et al., Diversity among french Bacillus anthracis Isolates, J. Clin. Microbiol., 2002, vol. 40, no. 12, pp. 4732—4734.CrossRefGoogle Scholar
  9. 9.
    Tsygankova, O.I., Eremenko, E.I., Bryukhanov, A.F., et al., Genotyping of Bacillus anthracis strains in the CIS region// Zh. Mikrobiol., 2003, no. 6, suppl., pp. 51—56.Google Scholar
  10. 10.
    Gierczyński, R., Kałuzewski, S., Rakin, A., et al., Intriguing diversity of Bacillus anthracis in eastern Poland—the molecular echoes of the past outbreaks, FEMS Microbiol. Lett., 2004, vol. 239, pp. 235—240.CrossRefGoogle Scholar
  11. 11.
    Fasanella, A., Van Ert, M., Altamura, S.A., et al., Molecular diversity of Bacillus anthracis in Italy, J. Clin. Microbiol., 2005, vol. 43, no. 7, pp. 3398—3401.CrossRefGoogle Scholar
  12. 12.
    Ryu, C., Lee, K., Hawng, H.-J., et al., Molecular characterization of Korean Bacillus anthracis isolates by amplified fragment length polymorphism analysis and multilocus variable-number tandem repeat analysis, Appl. Environ. Microbiol., 2005, vol. 71, no. 8, pp. 4664—4671.CrossRefGoogle Scholar
  13. 13.
    Merabishvili, M., Natidze, M., Rigvava, S., et al., Diversity of Bacillus anthracis strains in Georgia and of vaccine strains from the former Soviet Union, Appl. Environ. Microbiol., 2006, vol. 72, no. 8, pp. 5631—5636.CrossRefGoogle Scholar
  14. 14.
    Sue, D., Marston, C.K., Hoffmaster, A.R., et al., Genetic diversity in a Bacillus anthracis historical collection (1954 to 1988), J. Clin. Microbiol., 2007, vol. 45, no. 6, pp. 1777—1782.CrossRefGoogle Scholar
  15. 15.
    Shishkova, N.A., Mokrievich, A.N., Platonov, M.E., et al., The study of the genetic diversity of Bacillus anthracis strains from the collection of FBIS SRCAMB, Probl. Osobo Opasnykh Infekts., 2010, no. 104, pp. 60—65.Google Scholar
  16. 16.
    Aikembayev, A.M., Lukhnova, L., Temiraliyeva, G., et al., Historical distribution and molecular diversity of Bacillus anthracis, Kazakhstan, Emerging Infect. Dis., 2010, vol. 16, no. 5, pp. 789—796.CrossRefGoogle Scholar
  17. 17.
    Okutani, A., Tungalag, H., Boldbaatar, B., et al., Molecular epidemiological study of Bacillus anthracis isolated in Mongolia by multiple-locus variable-number tandem repeat analysis for 8 loci (MLVA-8), Jpn. J. Infect. Dis., 2011, vol. 64, pp. 345—348.Google Scholar
  18. 18.
    Pilo, P. and Frey, J., Bacillus anthracis: Molecular taxonomy, population genetics, phylogeny and patho-evolution, Infect. Genet. Evol., 2011, vol. 11, no. 6, pp. 1218—1224.  https://doi.org/10.1016/j.meegid.2011.05.013 CrossRefGoogle Scholar
  19. 19.
    Eremenko, E.I., Ryazanova, A.G., Tsygankova, O.I., et al., Genotype diversity of Bacillus anthracis strains isolated from the Caucasus region, Mol. Genet., Microbiol. Virol., 2012, vol. 27, no. 2, pp. 74—78.  https://doi.org/10.3103/S0891416812020024.CrossRefGoogle Scholar
  20. 20.
    Afanas’ev, M.V., Kravets, E.V., Dugarzhapova, Z.F., et al., Comparative multilocus VNTR and SNP analysis of Bacillus anthracis vaccine strains, Mol. Genet., Microbiol. Virol., 2014, no. 2. pp. 86—92.  https://doi.org/10.3103/S0891416814020025.
  21. 21.
    Timofeev, V.S., Bakhteeva, I.V., and Dyatlov, I.A., Genotyping of Bacillus anthracis and closely related microorganisms, Russ. J. Genet., 2018, vol. 54, no. 1. pp. 1—11.  https://doi.org/10.1134/S1022795418010118.CrossRefGoogle Scholar
  22. 22.
    Keim, P., Van Ert, M.N., and Pearson, T., Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales, Infect., Gen. Evol., 2004, no. 4, pp. 205—213.Google Scholar
  23. 23.
    Stratilo, C.W., Lewis, C.T., Bryden, L., et al., Single-nucleotide repeat analysis for subtyping Bacillus anthracis isolates, J. Clin. Microbiol., 2006, vol. 44, no. 3, pp. 777—782.  https://doi.org/10.1128/JCM.44.3.777-782.2006 CrossRefGoogle Scholar
  24. 24.
    Kenefic, L.J., Beaudry, J., Trim, C., et al., A high resolution four-locus multiplex single nucleotide repeat (SNR) genotyping in Bacillus anthracis, J. Microbiol. Methods, 2008, vol. 73, no. 3, pp. 269—272.  https://doi.org/10.1016/j.mimet.2007.11.014 CrossRefGoogle Scholar
  25. 25.
    Kenefic, L.J., Beaudry, J., Trim, C., et al., High resolution genotyping of Bacillus anthracis outbreak strains using four highly mutable single nucleotide repeat markers, Lett. Appl. Microbiol., 2008, vol. 46, no. 5, pp. 600—603.  https://doi.org/10.1111/j.1472-765X.2008.02353.x CrossRefGoogle Scholar
  26. 26.
    Stratilo, C.W. and Bader, D.E., Genetic diversity among Bacillus anthracis soil isolates at fine geographic scales, Appl. Environ. Microbiol., 2012, vol. 78, no. 18, pp. 6433—6437.CrossRefGoogle Scholar
  27. 27.
    Garofolo, G., Ciammaruconi, A., Fasanella, A., et al., SNR analysis: molecular investigation of an anthrax epidemic, BMC Veter. Res., 2010. 6:11. http://www. biomedcentral.com/1746-6148/6/11.Google Scholar
  28. 28.
    Van Ert, M.N., Easterday, W.R., Huynh, L.Y., et al., Global genetic population structure of Bacillus anthracis, PLoS One, 2007, vol. 2, no. 5, pp. 1—10. e461.  https://doi.org/10.1371/journal.pone.0000461
  29. 29.
    Girault, G., Thierry, S., Cherchame, E., and Derzelle, S., Application of high-throughput sequencing: discovery of informative SNPs to subtype Bacillus anthracis, Adv. Biosci. Biotech., 2014, no. 5, pp. 669—677.  https://doi.org/10.4236/abb.2014.57079.
  30. 30.
    Yamashita, A., Sekizuka, T., and Kuroda, M., GcoGSA-BA: a global core genome SNP analysis for Bacillus anthracis, Health Secur., 2015, vol. 13, no. 1, pp. 64—68.  https://doi.org/10.1089/hs.2014.0076 CrossRefGoogle Scholar
  31. 31.
    Leekitcharoenphon, P., Kaas, R.S., Thomsen, M.C., et al., SnpTree—a web-server to identify and construct SNP trees from whole genome sequence data, BMC Genomics, 2012, vol. 13, suppl. 7:S6.CrossRefGoogle Scholar
  32. 32.
    Keim, P., Grunowc, R., Vipond, R., et al., Whole genome analysis of injectional anthrax identifies two disease clusters spanning more than 13 years, EBioMedicine, 2015, vol. 2, no. 6, pp. 1613—1618. . eCollection 2015.  https://doi.org/10.1016/j.ebiom.2015.10.004
  33. 33.
    Derzelle, S., Aguilar-Bulteta, L., and Freya, J., Whole genome SNP analysis of bovine B. anthracis strains from Switzerland reflects strict regional separation of Simmental and Swiss brown breeds in the past, Vet. Microbiol., 2016, vol. 196, pp. 1—8. http://dx.org/10.1016/j.vetmic.2016.10.014.CrossRefGoogle Scholar
  34. 34.
    Antwerpen, M.H., Sahl, J.W., Birdsell, D., et al., Unexpected relations of historical anthrax strain, mBio, 2017. 8:e00440-17. https://org/  https://doi.org/10.1128/mBio.00440-17
  35. 35.
    Derzelle, S., Girault, G., Roest, H.I., et al., Molecular diversity of Bacillus anthracis in the Netherlands: investigating the relationship to the worldwide population using whole-genome SNP discovery, Infect., Gen. Evol., 2015, vol. 32, pp. 370—376. http://dx.org/10.1016/j.meegid.2015.03.030.Google Scholar
  36. 36.
    Sabat, A.J., Budimir, A., Nashev, D., et al., Overview of molecular typing methods for outbreak detection and epidemiological surveillance, Euro Surveill., 2013, vol. 18, no. 4, pp. 1—14. pii=20380. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=2038.Google Scholar
  37. 37.
    Kulichenko, A.N., Eremenko, E.I., Ryazanova, A.G., et al., Biological properties and molecular genetic characterization of Bacillus anthracis strains isolated during the anthrax outbreak in the Yamalo-Nenets Autonomous Okrug in 2016, Probl. Osobo Opasnykh Infekts., 2017, no. 1. pp. 94—99.  https://doi.org/10.21055/0370-1069-2017-1-94-99
  38. 38.
    Opyt likvidatsii vspyshki sibirskoi yazvy na Yamale v 2016 (The Experience of Eliminating the Outbreak of Anthrax on Yamal in 2016), Popova, A.Yu. and Kulichenko, A.N., Eds., Izhevsk: Print 2, 2017.Google Scholar
  39. 39.
    Koteneva, E.A., Tsygankova, O.I., and Eremenko, E.I. Analysis of canSNP genotypes of Bacillus anthracis strains isolated on the territory of the Northern Caucasus and Transcaucasia, Aktual’nye problemy epidemiologii i profilakticheskoi meditsiny (Current Issues in Epidemiology and Preventive Medicine) (Proc. 6th All-Russ. Theor. Prakt. Conf. of Young Scientists and Specialists of Federal Service for Supervision of Consumer Rights Protection and Human Welfare), Stavropol, 2014.Google Scholar
  40. 40.
    Hunter, P.R. and Gaston, M.A., Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity, J. Clin Microbiol., 1988, vol. 26, no. 11, pp. 2465—2466.Google Scholar
  41. 41.
    Okinaka, R.T., Henrie, M., Hill, K.K., et al., Single nucleotide polymorphism typing of Bacillus anthracis from Sverdlovsk tissue, Emerging Infect. Dis., 2008, vol. 14, no. 4, pp. 653—656.  https://doi.org/10.3201/eid1404.070984 CrossRefGoogle Scholar
  42. 42.
    Ågren, J., Finn, M., Bengtsson, B., and Segerman, B., Microevolution during an anthrax outbreak leading to clonal heterogeneity and penicillin resistance, PLoS One, 2014, vol. 9, no. 2, pp. 1—14. e89112.  https://doi.org/10.1371/journal.pone.0089112
  43. 43.
    Eremenko, E.I., Ryazanova, A.G., Tsygankova, E.A., et al., Genotypic features of Bacillus anthracis strains with different manifestations of pathogenicity related traits, Probl. Osobo Opasnykh Infekts., 2010, no. 104. pp. 53—56.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. I. Eremenko
    • 1
    Email author
  • A. G. Ryazanova
    • 1
  • S. V. Pisarenko
    • 1
  • L. Yu. Aksenova
    • 1
  • O. V. Semenova
    • 1
  • E. A. Koteneva
    • 1
  • O. I. Tsygankova
    • 1
  • D. A. Kovalev
    • 1
  • T. M. Golovinskaya
    • 1
  • D. K. Chmerenko
    • 1
  • A. N. Kulichenko
    • 1
  1. 1.Stavropol Plague Control Research InstituteStavropolRussia

Personalised recommendations