Advertisement

Russian Journal of Genetics

, Volume 54, Issue 12, pp 1445–1451 | Cite as

Mitochondrial DNA Barcoding of the Pacific Oyster Crassostrea gigas (Thunberg, 1793) (Mollusca: Bivalvia: Ostreidae), Cultivated in the Black Sea

  • Yu. V. SlynkoEmail author
  • E. E. Slynko
  • A. V. Pirkova
  • L. V. Ladygina
  • V. I. Ryabushko
ANIMAL GENETICS
  • 8 Downloads

Abstract

To clarify the taxonomic assignment of oysters bred at the nursery of the Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences (IMBR RAS), and to determine the genetic variability parameters, the sequence variation of oyster mitochondrial COI and 16S rRNA gene fragments was analyzed. Comparison with other species of the genera Crassostrea and Ostrea showed that oysters bred at the nursery belonged to Crassostrea gigas. The generation examined was characterized by considerable decrease in genetic variability.

Keywords:

giant oyster Portuguese oyster edible oyster taxonomic status barcoding cytochrome oxidase I 16S rRNA 

Notes

REFERENCES

  1. 1.
    Orlenko, A.N., Giant oyster, Crassostrea gigas (Bivalvia, Mytiloformes, Crassostreidae) as an object of acclimatization and the main stages of its transplantation into the Black Sea, Zool. Zh., 1994, vol. 73, no. 1, pp. 51—54.Google Scholar
  2. 2.
    Skarlato, O.A. and Starobogatov, Ya.I., Class Bivalvia, in Opredelitel’ fauny Chernogo i Azovskogo morei (The Identification Guide to the Fauna of the Black Sea and the Sea of Azov), Kiev: Naukova Dumka, 1972, pp. 178—250.Google Scholar
  3. 3.
    Kholodov, V.I., Pirkova, A.V., and Ladygina, L.V., Vyrashchivanie midii i ustrits v Chernom more (Cultivation of Mussels and Oysters in the Black Sea), Voronezh: Izdat-Print, 2017.Google Scholar
  4. 4.
    Krakatitsa, T.F., Biologiya chernomorskoi ustritsy Ostrea edulis L. v svyazi s voprosami ee vosproizvodstva (Biology of the Black Sea oyster, Ostrea edulis L. in Relation with the Issues of Its Reproduction), Kiev: Naukova Dumka, 1976.Google Scholar
  5. 5.
    Boudry, P., Barré, M., and Gérard, A., Genetic improvement and selection in shellfish: a review based on oyster research and production, Cah. Options Méditerr., 1998, vol. 34, pp. 61—75.Google Scholar
  6. 6.
    Allen, S.K., Gaffney, P.M., Scarpa, J., and Bushek, D., Inviable hybrids of Crassostrea virginica (Gmelin) with C. rivularis (Gould) and C. gigas (Thunberg), Aquaculture, 1993, vol. 113, pp. 269—289.CrossRefGoogle Scholar
  7. 7.
    Lam, K. and Morton, B., The oysters of Hong Kong (Bivalvia: Ostreidae and Gryphaeidae), Raffles Bull. Zool., 2004, vol. 52, no. 1, pp. 11—28.Google Scholar
  8. 8.
    Sekino, M. and Yamashita, H., Mitochondrial DNA barcoding for Okinawan oysters: a cryptic population of the Portuguese oyster Crassostrea angulata in Japanese waters, Fish. Sci., 2013, vol. 79, pp. 61—76. doi 10.1007/s12562-012-0577-2CrossRefGoogle Scholar
  9. 9.
    Hsiao, Sh.-T., Chuang, Sh.-Ch., Chen, K.-S., et al., DNA barcoding reveals that the common cupped oyster in Taiwan is the Portuguese oyster Crassostrea angulata (Ostreoida; Ostreidae), not C. gigas, J. Sci. Rep., 2016, vol. 6, pp. 1—11. doi 10.1038/srep34057CrossRefGoogle Scholar
  10. 10.
    Hebert, P.D.N., Cywinska, A., Ball, S.L., and DeWaard, J.R., Biological identifications through DNA barcodes, Philos. Trans. R. Soc., B, 2003, vol. 270, pp. 313—321. doi 10.1098/rspb.2002.2218Google Scholar
  11. 11.
    Lam, K. and Morton, B., Morphological and mitochondrial-DNA analysis of the Indo-West Pacific rock oysters (Ostreidae: Saccostrea species), J. Molluscan Stud., 2006, vol. 72, pp. 235—245. doi org/10.1093/mollus/eyl002Google Scholar
  12. 12.
    Allendorf, F.U. and Riman, N., Genetic management of artificial reproduction of fish stocks, in Populyatsionnaya genetika i upravlenie rybnym khozyaistvom (Population Genetics and Fisheries Management), Moscow: Agropromizdat, 1991, pp. 177—198.Google Scholar
  13. 13.
    Folmer, O., Black, M., Hoeh, W., et al., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, pp. 294—299.Google Scholar
  14. 14.
    Melo, A.G.C., Varela, E.S., Beasley, C.R., et al., Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea), Genet. Mol. Biol., 2010, vol. 33, no. 3, pp. 564—572. doi org/10.1590/S1415-47572010000300030Google Scholar
  15. 15.
    Melo, C.M.R., Silva, F.C., Gomes, C.H.A.M., et al., Crassostrea gigas in natural oyster banks in southern Brazil, Biol. Invasions, 2010, vol. 12, no. 3, pp. 441—449. doi 10.1007/s10530-009-9475-7CrossRefGoogle Scholar
  16. 16.
    Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406—425. doi 10.1093/oxfordjournals.molbev.a040454Google Scholar
  17. 17.
    Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451—1452. doi 10.1093/bioinformatics/btp187CrossRefGoogle Scholar
  18. 18.
    NCBI. http://www.ncbi.nlm.nih.gov.Google Scholar
  19. 19.
    Lazoski, C., Gusmao, J., Boudry, P., and Sole-Cava, A.M., Phylogeny and phylogeography of Atlantic oyster species: evolutionary history, limited genetic connectivity and isolation by distance, Mar. Ecol. Prog., 2011, ser. 426, pp. 197—212. doi 10.3354/meps09035Google Scholar
  20. 20.
    Ren, J., Hou, Z., Wang, H., et al., Intraspecific variation in mitogenomes of five Crassostrea species provides insight into oyster diversification and speciation, Mar. Biotechnol., 2016, vol. 18, no. 2, pp. 242—254. doi org/10.1007/s10126-016-9686-8Google Scholar
  21. 21.
    Li, S., Li, Q., Yu, H., et al., Genetic variation and population structure of 605 the Pacific oyster Crassostrea gigas in the northwestern Pacific inferred from 606 mitochondrial COI sequences, Fish. Sci., 2015, vol. 81, no. 6, pp. 1071—1082.CrossRefGoogle Scholar
  22. 22.
    Yu, Z., Kong, X., and Liu, Y., Sequencing of ribosomal internal transcribed spacer regions (ITS-1 and ITS-2) and two mitochondrial gene fragments (16S and COI) in Crassostrea gigas and their potential uses, 2017 (Unpublished. https://www.ncbi.nlm.nih.gov/nuccore/AF280611.1).Google Scholar
  23. 23.
    Wang, M., Sun, S., Cheng, F., and Wang, R., DNA barcoding of zooplankton in the Jiaozhou Bay for species identification, 2017 (Unpublished. https://www.ncbi.nlm.nih.gov/nuccore/HQ718598).Google Scholar
  24. 24.
    Sanchez, A., Quinteiro, J., Rey-Mendez, M., et al., Identification and quantification of oyster species larva using real time PCR, 2017 (Unpublished. https://www.ncbi.nlm.nih.gov/nuccore/JF808180).Google Scholar
  25. 25.
    Kartavtsev, Yu.F. and Li, D.S., Analysis of nucleotide diversity at genes Cyt-b and Co-1 on population, species, and genera levels, Russ. J. Genet., 2006, vol. 42, no. 4, pp. 341—362.CrossRefGoogle Scholar
  26. 26.
    Wang, J., Xu, F., Li, L., and Zhang, G., A new identification method for five species of oysters in genus Crassostrea from China based on high-resolution melting analysis, Chin. J. Oceanol. Limnol., 2014, vol. 32, no. 2, pp. 419—425. doi 10.1007/s00343-014-3124-4Google Scholar
  27. 27.
    Boudry, P., Collet, B., Cornette, F., et al., High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses, Aquaculture, 2002, vol. 204, nos. 3–4, pp. 283—296.CrossRefGoogle Scholar
  28. 28.
    Lallias, D., Boudry, P., Batista, F.M., et al., Invasion genetics of the Pacific oyster Crassostrea gigas in the British Isles inferred from microsatellite and mitochondrial markers, Biol. Invasions, 2015, vol. 17(9), pp. 2581—2595. doi 10.1007/s10530-015-0896-1Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Yu. V. Slynko
    • 1
    Email author
  • E. E. Slynko
    • 1
    • 2
  • A. V. Pirkova
    • 1
  • L. V. Ladygina
    • 1
  • V. I. Ryabushko
    • 1
  1. 1.Kovalevsky Institute of Marine Biological Research, Russian Academy of SciencesSevastopolRussia
  2. 2.Papanin Institute for Biology of Inland Waters, Russian Academy of SciencesBorokRussia

Personalised recommendations