Russian Journal of Genetics

, Volume 54, Issue 12, pp 1438–1444 | Cite as

Inheritance of 5'-Truncated Copies of R2 Retrotransposon in a Series of Generations of German Cockroach, Blattella germanica

  • N. Yu. Oyun
  • A. S. Zagoskina
  • D. V. MukhaEmail author


Inheritance of 5'-truncated copies of R2 retrotransposon of German cockroach, Blattella germanica, was analyzed in a series of generations. It was shown that copies of certain length are linked and form different patterns associated with X chromosomes where R2 retrotransposons are normally localized within clusters of ribosomal genes and, unexpectedly with autosomes. There was no recombination between certain copies of different length, and new variants of 5'-truncated copies were not found. Taking into account the stable inheritance of particular patterns of various R2 5'-truncated copies, we suggest using them as convenient molecular markers in population genetics studies of German cockroach, Blattella germanica. It was also shown that only short degenerate DNA sequences of R2 retrotransposon were present outside the cluster of ribosomal genes; apparently, DNA sequences corresponding to native full-length copies and/or open reading frames of R2 retrotransposon are present only within the cluster.


5'-truncated copies of R2 retrotransposon inheritance “master copies” of transposable elements pseudogene genome of the German cockroach Blattella germanica 



  1. 1.
    Oliver, K.R. and Greene, W.K., Transposable elements: powerful facilitators of evolution, Bioessays, 2009, vol. 31, pp. 703—714.CrossRefGoogle Scholar
  2. 2.
    Bire, S. and Rouleux-Bonnin, F., Transposable elements as tools for reshaping the genome: it is a huge world after all!, Methods Mol. Biol., 2012, vol. 859, pp. 1—28.CrossRefGoogle Scholar
  3. 3.
    Kim, Y.J., Lee, J., and Han, K., Transposable elements: no more “Junk DNA,” Genomics Inf., 2012, vol. 10, pp. 226—233.CrossRefGoogle Scholar
  4. 4.
    Casacuberta, E. and González, J., The impact of transposable elements in environmental adaptation, Mol. Ecol., 2013, vol. 22, pp. 1503—1517.CrossRefGoogle Scholar
  5. 5.
    Chénais, B., Transposable elements and human cancer: a causal relationship?, Biochim. Biophys. Acta, 2013, vol. 1835, pp. 28—35.Google Scholar
  6. 6.
    Kapitonov, V.V., Tempel, S., and Jurka, J., Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences, Gene, 2009, vol. 448, no. 2, pp. 207—213.CrossRefGoogle Scholar
  7. 7.
    Havecker, E.R., Gao, X., and Voytas, D., The diversity of LTR retrotransposons, Genome Biol., 2004, vol. 5, no. 6, p. 225. doi 10.1186/gb-2004-5-6-225CrossRefGoogle Scholar
  8. 8.
    Mukha, D.V., Pasyukova, E.G., Kapelinskaya, T.V., and Kagramanova, A.S., Endonuclease domain of the Drosophila melanogaster R2 non-LTR retrotransposon and related retroelements: a new model for transposition, Front. Genet., 2013, vol. 4, p. 63. doi 10.3389/fgene.2013.00063CrossRefGoogle Scholar
  9. 9.
    Han, J.S., Non-LTR retrotransposons: mechanisms, recent developments, and unanswered questions, Mobile DNA, 2010, vol. 1, p. 15. doi 10.1186/1759-8753-1-15CrossRefGoogle Scholar
  10. 10.
    Kagramanova, A.S., Korolev, A.L., Shal, K., and Mukha, D.V., Length polymorphism of integrated copies of R1 and R2 retrotransposons in the German cockroach (Blattella germanica) as a potential marker for population and phylogenetic studies, Russ. J. Genet., 2006, vol. 42, no. 4, pp. 397—401. Scholar
  11. 11.
    Kagramanova, A.S., Kapelinskaya, T.V., Korolev, A.L., and Mukha, D.V., R1 and R2 retrotransposons of German cockroach Blatella germanica: a comparative study of 5′-truncated copies integrated into the genome, Mol. Biol. (Moscow), 2007, vol. 41, no. 4, pp. 546—553. Scholar
  12. 12.
    Ruminski, D.J., Webb, C.H., Riccitelli, N.J., and Lupták, A., Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes, J. Biol. Chem., 2011, vol. 286, no. 48, pp. 41286—41295.CrossRefGoogle Scholar
  13. 13.
    Mukha, D.V., Sidorenko, A.P., Lazebnaya, I.V., and Zakharov, I.A., Structural variation of the ribosomal gene cluster within the Insecta class, Russ. J. Genet., 1995, vol. 31, no. 9, pp. 1065—1069.Google Scholar
  14. 14.
    Okonechnikov, K., Golosova, O., and Fursov, M., Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, pp. 1166—1167. doi 10.1093/bioinformatics/bts091CrossRefGoogle Scholar
  15. 15.
    Ross, M.H. and Cochran, D.G., Genetics of the German cockroach, Comp. Biochem. Physiol., 1989, vol. 94, no. 4, pp. 551—554.CrossRefGoogle Scholar
  16. 16.
    Cochran, D.G. and Ross, M.H., Preliminary studies of the chromosomes of twelve cockroach species (Blattaria: Blattidae, Blatellidae, Blaberidae), II Ann. Entomol. Am., 1967, vol. 60, pp. 1265—1272.CrossRefGoogle Scholar
  17. 17.
    Cohen, S. and Roth, L.M., Chromosome numbers of the Blattaria, II Ann. Entomol. Soc. Am., 1970, vol. 63, pp. 1520—1547.CrossRefGoogle Scholar
  18. 18.
    Harrison, M.C., Jongepier, E., Robertson, H.M., et al., Hemimetabolous genomes reveal molecular basis of termite eusociality, Nat. Ecol. Evol., 2018, vol. 2, no. 3, pp. 557—566.CrossRefGoogle Scholar
  19. 19.
    Camacho, C., Coulouris, G., Avagyan, V., et al., BLAST+: architecture and applications, BMC Bioinf., 2008, vol. 10, p. 421.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Vavilov Institute of General Genetics Russian Academy of SciencesMoscowRussia

Personalised recommendations