Russian Journal of Genetics

, Volume 54, Issue 12, pp 1471–1478 | Cite as

Search for Correlation between Indicators of Tolerance to Extreme Impacts and Levels of Individual Heterozygosity

  • O. L. KurbatovaEmail author
  • E. Yu. Pobedonostseva
  • R. R. Kaspransky
  • O. N. Larina


This paper presents the results of studying the problem of differential adaptation of genotypes to the extreme conditions of spaceflights. Analysis of the statistical correlations between the integral parameters of the genotype and indicators of endurance against the effects of spaceflight factors (SFFs) was carried out in the cohort of the Russian cosmonauts. The relevance of this study is related to the need to substantiate the possibility, validity, and prospects of using genetic tests to predict individual resistance to SFFs. Various methods of correlation analysis and the method of correspondence analysis were applied. With the help of traditional methods of correlation analysis, weak but statistically significant correlation was revealed between the parameter of individual heterozygosity and indicators of vestibular resistance, as well as with the total indicator of resistance to simulated SFFs. Correspondence analysis confirmed the existence of such associations. The results of the study indicate the need to increase the sample size and to attract a wide range of genetic markers for a statistically significant substantiation of correlation between the indicators of resistance against SFFs and the integral parameters of the genotype.


cosmonauts heterozygosity spaceflight factors resistance to vestibular impacts correlation analysis correspondence analysis 



  1. 1.
    Spitsyn, V.A., Ekologicheskaya genetika cheloveka (Human Ecological Genetics), Moscow: Nauka, 2008.Google Scholar
  2. 2.
    Spitsyn, V.A., Makarov, S.V., Pai, G.V., and Bychkovskaya, L.S., Genetic variability due to anthropogenic environment: genetic aspects of occupational diseases, Med. Genet., 2005, vol. 4, no. 10, pp. 446—453.Google Scholar
  3. 3.
    Ahmetova, I.I. and Rogozkina, V.A., Genes, athlete status and training: an overview, Genetics and Sports, Collins, M., Ed., Basel: Karger: Med. Sport Sci., 2009, vol. 54, pp. 43—71.Google Scholar
  4. 4.
    Diogenes, M.E., Bezerra, F.F., Cabello, G.M., et al., Vitamin D receptor gene FokI polymorphisms influence bone mass in adolescent football (soccer) players, Eur. J. Appl. Physiol., 2010, vol. 108, no. 1, pp. 31—38.CrossRefGoogle Scholar
  5. 5.
    Cięszczyk, P., Eider, J., Ostanek, M., et al., Is the C34T polymorphism of the AMPD1 gene associated with athlete performance in rowing?, Int. J. Sports Med., 2011, vol. 32, no. 12, pp. 987—991.CrossRefGoogle Scholar
  6. 6.
    Udina, I.G., Veselovskaya, E.V., Lysenko, V.V., et al., Methodology of anthropologic genetic study of athletes in various sports, Nauka Kubani, 2012, no. 1, pp. 4—9.Google Scholar
  7. 7.
    Eynon, N., Meckel, Y., Alves, A.J., et al., Is there an interaction between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance?, Exp. Physiol., 2009, vol. 94, no. 11, pp. 1147—1152.CrossRefGoogle Scholar
  8. 8.
    Udina, I.G., Butovskaya, M.L., Butovskaya, P.R., et al., Anthropological and genetic study of the combat sports athlets: the establishment of complex characteristics that determine the adaptation to ultra-high sports loads, in Sbornik nauchno-populyarnykh statey i fotomaterialov—pobediteley konkursa Rossiiskogo Fonda Fundamentalnykh Issledovanii 2014 goda (Collection of Popular Scientific Articles and Photographic Materials—the Winners of the 2014 Russian Foundation for Basic Research Competition), Shakhnov, V.A., Ed., 2015, issue 18, pp. 366—383. rffi/ru/annotated_project_reports/o_1942468.Google Scholar
  9. 9.
    Bondareva, E.A. and Ketlerova, E.S., Search for associations of T/A growth hormone gene polymorphism with some morphological and functional characteristics of athletes, Vestn. Mosk. Univ., Ser. 23: Antropol., 2017, no. 2, pp. 61—67.Google Scholar
  10. 10.
    Nazarov, I.B., Woods, D.R., Montgomery, H.E., et al., The angiotensin converting enzyme I/D polymorphism in Russian athletes, Eur. J. Hum. Genet., 2001, no. 9, pp. 797—801.Google Scholar
  11. 11.
    MacArthur, D.G. and North, K.N., A gene for speed? The evolution and function of a-actinin-3, BioEssays, 2004, vol. 26, pp. 786—795.CrossRefGoogle Scholar
  12. 12.
    Puthucheary, Z., Skipworth, J.R., Rawal, J., et al., Genetic influences in sport and physical performance, Sports Med., 2011, vol. 41, no. 10, pp. 845—859.CrossRefGoogle Scholar
  13. 13.
    Tsianos, G.I., Evangelou, E., Boot, A., et al., Associations of polymorphisms of eight muscle—or metabolism-related genes with performance in Mount Olympus marathon runners, J. Appl. Physiol., 2010, vol. 108, no. 3, pp. 567—574.CrossRefGoogle Scholar
  14. 14.
    Wolfarth, B., Rivera, M.A., Oppert, J.M., et al., A polymorphism in the alpha2a-adrenoceptor gene and endurance athlete status, Med. Sci. Sports Exercises, 2000, vol. 32, no. 10, pp. 1709—1712.CrossRefGoogle Scholar
  15. 15.
    Simonen, R.L., Rankinen, T., Pérusse, L., et al., A dopamine D2 receptor gene polymorphism and physical activity in two family studies, Physiol. Behav., 2003, vol. 78, nos. 4—5, pp. 751—757.CrossRefGoogle Scholar
  16. 16.
    Rosenberg, S.H., Templeton, A.R., and Feigin, P.D., et al., The association of DNA sequence variation at the MAOA genetic locus with quantitative behavioural traits in normal males, Hum. Genet., 2006, vol. 120, pp. 447—459.CrossRefGoogle Scholar
  17. 17.
    Vasil’ev, V.A., Lazebnyi, O.E., et al., The relationship between polymorphism of four serotonic genes (5-HTTL, 5-HT1A, 5-HT2A, and MAOA) and personality traits in wrestlers and control group, Mol. Genet., Microbiol. Virol., 2015, vol. 30, no. 4, pp. 165—172. S0891416815040035.Google Scholar
  18. 18.
    Butovskaya, P.R., Butovskaya, M.L., Vasilyev, V.A., et al., Molecular genetic polymorphisms of dopamine, serotonin and androgenic systems as molecular markers of success in judo wrestling sportsmen, J. Bioanal. Biomed., 2013, S3. e05—e10. doi ISSN:1948-593X JBABM.10.4172/1948-593X.S3-005Google Scholar
  19. 19.
    Schmidt, M.A. and Goodwin, T.J., Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance, Metabolomics, 2013, no. 9, pp. 1134—1156. doi 10.1007/s11306-013-0556-3Google Scholar
  20. 20.
    Zwart, S.R., Gregory, J.F., Zeisel, S.H., et al., Genotype, B-vitamin status, and androgens affect space flight-induced ophthalmic changes, FASEB J., 2018, vol. 30, no. 1, pp. 141—148. http:// Accessed February 19, 2018.Google Scholar
  21. 21.
    Altukhov, Yu.P. and Kurbatova, O.L., The problem of adaptive norm in human populations, Genetica (Moscow), 1990, vol. 26, no. 4, pp. 583—598.Google Scholar
  22. 22.
    Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003, 3rd ed.Google Scholar
  23. 23.
    Altukhov, Yu.P., Grigor’ev, A.I., Pobedonostseva, E.Yu., et al., Population genetic study of nonspecific resistance of organisms to the space flight conditions, Mediko-biologicheskie issledovaniya po programme “Nauka—NASA” (Medical Biological Research within the Framework of the Nauka—NASA Program) (Proc. 3rd Russian-American Symp.), Moscow, 1997, pp. 14–15.Google Scholar
  24. 24.
    Altukhov, Yu.P., Kurbatova, O.L., Malinina, T.V., et al., The first experience of studying the integral parameters of the cosmonauts’ and test engineers’ genotype using the combination of polymorphic and monomorphic loci, Kosmicheskaya biologiya i aviakosmicheskaya meditsina (Space Biology and Aerospace Medicine) (Proc. 11th Int. Conf.), Moscow, 1998, pp. 32—33.Google Scholar
  25. 25.
    Altukhov, Yu.P., Kurbatova, O.L., Malinina, T.V., et al., The possibility of applying genetic criteria for predicting the individual tolerance to space flight factors, Pilotiruemye polety v kosmos (Human Spaceflights) (Proc. 6th Int. Theor. Pract. Conf.), Moscow, 2000, pp. 366—368.Google Scholar
  26. 26.
    Altukhov, Yu.P., Kurbatova, O.L., Prokhorovskaya, V.D., et al., Distribution of ABO, Rhesus, MNSs, P, Duffy, Kidd, and Kell blood groups among the cosmonauts and test subjects, Kosmicheskaya biologiya i aviakosmicheskaya meditsina (Space Biology and Aerospace Medicine) (Proc. 12th Int. Conf.), Moscow, 2002, pp. 32—33.Google Scholar
  27. 27.
    Altukhov, Yu.P., Kurbatova, O.L., Pobedonostseva, E.Yu., et al., The distribution of individual heterozygosity among the cosmonauts and test subjects, Kosmicheskaya biologiya i aviakosmicheskaya meditsina (Space Biology and Aerospace Medicine) (Proc. 13th Int. Conf.), Moscow, 2006, p. 11.Google Scholar
  28. 28.
    Kurbatova, O.L., Pobedonostseva, E.Yu., Prokhorovskaya, V.D., et al., Population genetic study of Russian cosmonauts and test subjects: genetic demographic parameters and immunogenetic markers, Russ. J. Genet., 2006, vol. 42, no. 10, pp. 1189—1198. Scholar
  29. 29.
    Pul, S.L., Voronkov, Yu.I., Vogan, K.F., et al., Medical requirements and procedures for the selection of astronauts, in Zdorov’e, rabotosposobnost’, bezopasnost’ kosmicheskikh ekipazhei: kosmicheskaya biologiya i meditsina (Health, Working Capacity, and Safety of Space Crews: Space Biology and Medicine), Moscow: Nauka, 2001, vol. 6, pp. 11—45.Google Scholar
  30. 30.
    Greenacre, M., Correspondence Analysis in Practice, CRC Press, 2017, 3th ed.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. L. Kurbatova
    • 1
    Email author
  • E. Yu. Pobedonostseva
    • 1
  • R. R. Kaspransky
    • 2
  • O. N. Larina
    • 3
  1. 1.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
  2. 2.Gagarin Research and Testing Center for Cosmonaut TrainingZvezdny GorodokRussia
  3. 3.State Scientific Center of the Russian Federation—Institute of Biomedical Problems, Russian Academy of SciencesMoscowRussia

Personalised recommendations