Russian Journal of Genetics

, Volume 54, Issue 12, pp 1429–1437 | Cite as

The Never-Ending Story of the Phylogeny and Taxonomy of Genus Triticum L.

  • K. Goriewa-DubaEmail author
  • A. Duba
  • U. Wachowska
  • M. Wiwart


The aim of many breeding programs for the conservation of genetic biodiversity is to preserve the genetic resources of wild species of wheat. Long-term selection combined with genetic drift (random changes in allele frequency within a population) and the bottleneck effect (a sudden random event that decreases the size of a population and limits its gene pool) have depleted the genetic diversity of the most popular species of the genus Triticum:common wheat (T. aestivum ssp. aestivum) and durum wheat (T. turgidum ssp. durum). These changes have turned the researchers’ attention to ancient species of wheat, including einkorn (T. monococcum ssp. monococcum), emmer (T. turgidum ssp. dicoccum) and spelt (T. aestivum ssp. spelta). Ancient species are characterized by a rich gene pool, and the most desirable genes can be transferred to the cultivated wheat species via introgression. Advanced molecular techniques support increasingly complex analyses of genetic diversity in various accessions of the genus Triticum and detailed examinations of their relationship, which determines changes in the taxonomy of the genus Triticum. Genetic diversity analyses increasingly often rely on DNA markers with various sensitivity, mostly restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR), single-nucleotide polymorphism (SNP) and diversity arrays technology (DArT) markers. The development of a universal taxonomic system for the genus Triticum is a highly challenging task. Continued efforts are being made in this area to expand our knowledge about the phylogeny of wheat and systematize various accessions in genetic databases.


Triticum taxonomy origin genetic diversity molecular markers 


  1. 1.
    Joerin, U.E., Stocker, T.F., and Schlüchter, C., Multicentury glacier fluctuations in the Swiss Alps during the Holocene, Holocene, 2006, vol. 16, pp. 697—704.CrossRefGoogle Scholar
  2. 2.
    Goncharov, N.P., Genus Triticum L. taxonomy: the present and the future, Plant Syst. Evol., 2011, vol. 295, pp. 1—11.CrossRefGoogle Scholar
  3. 3.
    Goncharov, N.P., Golovnina, K.A., and Kondratenko, E.Y., Taxonomy and molecular phylogeny of natural and artificial wheat species, Breed. Sci., 2009, vol. 59, pp. 492—498.CrossRefGoogle Scholar
  4. 4.
    Feldman, M., Levy, A.A., Fahima, T., and Korol, A., Genomic asymmetry in allopolyploid plants: wheat as a model, J. Exp. Bot., 2012, vol. 63, pp. 5045—5059.CrossRefGoogle Scholar
  5. 5.
    Feldman, M., and Levy, A.A., Allopolyploidy—a shaping force in the evolution of wheat genomes, Cytogenet. Genome Res., 2005, vol. 109, pp. 250—258.CrossRefGoogle Scholar
  6. 6.
    Blake, N.K., Lehfeldt, B.R., Lavin, M., and Talbert, L.E., Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat, Genome, 1999, vol. 42, pp. 351—360.CrossRefGoogle Scholar
  7. 7.
    Özkan, H., Willcox, G., Graner, A., et al., Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides), Genet. Resour. Crop Evol., 2011, vol. 58, pp. 11—53.CrossRefGoogle Scholar
  8. 8.
    Peng, J.H., Sun, D., and Nevo, E., Domestication evolution, genetics and genomics in wheat. Mol. Breed., 2011, vol. 28, pp. 281—301.CrossRefGoogle Scholar
  9. 9.
    Mándy, G., New concept of the origin of Triticum aestivum L., Acta Agron. Hung., 1970, vol. 19, pp. 413—417.Google Scholar
  10. 10.
    Lilienfeld, F. and Kihara, H., Genomanalyse bei Triticum und Aegilops: 5. Triticum timopheevi Zhuk, Cytologia, 1934, vol. 6, pp. 87—122.CrossRefGoogle Scholar
  11. 11.
    Ozbek, O., Millet, E., Anikster, Y., et al., Spatio-temporal genetic variation in populations of wild emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis, Theor. Appl. Genet., 2007, vol. 115, pp. 19—26.CrossRefGoogle Scholar
  12. 12.
    Dedkova, O.S., Badaeva, E.D., Mitrofanova, O.P., et al., Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) Schubl. using C‑banding technique. Russ. J. Genet., 2007, vol. 43, pp. 1271—1285.CrossRefGoogle Scholar
  13. 13.
    Teklu, Y., Hammer, K., and Röder, M.S., Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation, Genet. Resour. Crop Evol., 2007, vol. 54, pp. 543—554.CrossRefGoogle Scholar
  14. 14.
    Maccaferri, M., Cane, M.A., Sanguineti, M.C., et al., A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping, BMC Genomics, 2014, vol. 15, p. 873.CrossRefGoogle Scholar
  15. 15.
    Golovnina, K.A., Glushkov, S.A., Blinov, A.G., et al., Molecular phylogeny of the genus Triticum L., Plant Syst. Evol., 2007, vol. 264, pp. 195—216.CrossRefGoogle Scholar
  16. 16.
    Dvorak, J., Deal, K.R., Luo, M.C., et al., The origin of spelt and free-threshing hexaploid wheat, J. Hered., 2012, vol. 103, pp. 426—441.CrossRefGoogle Scholar
  17. 17.
    El Baidouri, M., Murat, F., Veyssiere, M., et al., Reconciling the evolutionary origin of bread wheat (Triticum aestivum), New Phytol., 2017, vol. 213, pp. 1477—1486.CrossRefGoogle Scholar
  18. 18.
    Özkan, H., Brandolini, A., Schäfer-Pregl, R., and Salamini, F., AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey, Mol. Biol. Evol., 2002, vol. 19, pp. 1797—1801.CrossRefGoogle Scholar
  19. 19.
    Giuliani, A., Karagöz, A., and Zencirci, N., Emmer (Triticum dicoccon) production and market potential in marginal mountainous areas of Turkey, Mt. Res. Dev., 2009, vol. 29, pp. 220—229.CrossRefGoogle Scholar
  20. 20.
    Zaharieva, M., Ayana, N.G., Al Hakimi, A., et al., Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review, Genet. Resour. Crop Evol., 2010, vol. 57, pp. 937—962.CrossRefGoogle Scholar
  21. 21.
    Stallknecht, G.F., Gilbertson, K.M., and Ranney, J.E., Alternative wheat cereals as food grains: einkorn, emmer, spelt, kamut, and triticale, in Progress in New Crops, 1996, pp. 156—170.Google Scholar
  22. 22.
    Serpen, A., Gökmen, V., Pellegrini, N., and Fogliano, V., Direct measurement of the total antioxidant capacity of cereal products, J. Cereal Sci., 2008, vol. 48, pp. 816—820.CrossRefGoogle Scholar
  23. 23.
    Lachman, J., Hejtmánková, K., and Kotíková, Z., Tocols and carotenoids of einkorn, emmer and spring wheat varieties: selection for breeding and production, J. Cereal Sci., 2013, vol. 57, pp. 207—214.CrossRefGoogle Scholar
  24. 24.
    Vincentini, O., Borrelli, O., Silano, M., et al., T-cell response to different cultivars of farro wheat, Triticum turgidum ssp. dicoccum, in celiac disease patients, Clin. Nutr., 2009, vol. 28, pp. 272—277.CrossRefGoogle Scholar
  25. 25.
    Teklu, Y. and Hammer, K., Farmers’ perception and genetic erosion of tetraploid wheats landraces in Ethiopia, Genet. Resour. Crop Evol., 2006, vol. 53, pp. 1099—1113.CrossRefGoogle Scholar
  26. 26.
    Mac Key, J., Durum Wheat Breeding: Current Approaches and Future Strategies, CRC Press, Boca Raton, 2005, vol. 1.Google Scholar
  27. 27.
    Maccaferri, M., Sanguineti, M.C., Corneti, S., et al., Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability, Genetics, 2008, vol. 178, pp. 489—511.CrossRefGoogle Scholar
  28. 28.
    Ranieri, R., Geography of the Durum Wheat Crop, Open Fields, 2015. pdf.Google Scholar
  29. 29.
    Troccoli, A., Borrelli, G.M., De Vita, P., et al., Mini review: durum wheat quality: a multidisciplinary concept, J. Cereal Sci., 2000, vol. 32, pp. 99—113.CrossRefGoogle Scholar
  30. 30.
    Zohary, D., Hopf, M., and Weiss, E., Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin, Oxford University Press, 2012.CrossRefGoogle Scholar
  31. 31.
    Monah, F., The Spread of Cultivated Plants in the Region between the Carpathians and Dniestr, 6th–4th millenia cal BC: The Origins and Spread of Domestic Plants in Southwest Asia and Europe, New York: Routledge, 2007.Google Scholar
  32. 32.
    Pospíšil, R. and Ržonca, J., Energy and carbon dioxide balance by different cultivation technologies of winter wheat, Acta Fytotech. Zootech., 2011, vol. 14, pp. 45—51.Google Scholar
  33. 33.
    Waga, J., Wegrzyn, S., Boros, D., and Cygankiewicz, A., Wykorzystanie orkiszu (Triticum aestivum ssp. spelta) do poprawy właściwości odżywczych pszenicy zwyczajnej (Triticum aestivum ssp. vulgare), Biul. Inst. Hodowli Aklim. Roślin, 2002, vol. 221, pp. 3—16.Google Scholar
  34. 34.
    Nielsen, N.H., Backes, G., Stougaard, J., et al., Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties, PLoS One, 2014, vol. 9. e94000CrossRefGoogle Scholar
  35. 35.
    Altıntaş, S., Toklu, F., Kafkas, S., et al., Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers, Plant Breed., 2008, vol. 127, pp. 9—14.Google Scholar
  36. 36.
    Çifçi, E.A. and Yağdi, K., Study of genetic diversity in wheat (Triticum aestıvum) varieties using random amplified polymorphic DNA (RAPD) analysis, Turk. J. Field Crops, 2012, vol. 17, pp. 91—95.Google Scholar
  37. 37.
    Brisson, N., Gate, P., Gouache, D., et al., Why are wheat yields stagnating in Europe? A comprehensive data analysis for France, Field Crop Res., 2010, vol. 119, pp. 201—212.CrossRefGoogle Scholar
  38. 38.
    Linnaeus, C., Species Plantarum, Holmiae: Impensis Laurentii Salvii, 1753.Google Scholar
  39. 39.
    Körnicke, F., Der Weizen, Handbuch des Getreidebaus, Körnicke, F. and Werner, H., Eds., Berlin: Paul Parey, 1885, vol. 1, pp. 22—114.CrossRefGoogle Scholar
  40. 40.
    Mac Key, J., Sec. Dicoccoides Flaksb. of Wheat, Its Phylogeny, Diversification and Subdivision (Proc. Symp. Ext. Availability Wheat Genet. Res.), Bari, 1977.Google Scholar
  41. 41.
    Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Kul’turnaya flora SSSR (Cultivated Flora of the Soviet Union), vol. 1: Pshenitsa (Wheat), Leningrad: Kolos, 1979.Google Scholar
  42. 42.
    van Slageren, M.W., Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae), Wageningen Agricultural University Papers, 1994.Google Scholar
  43. 43.
    Goncharov, N.P., Comparative-genetic analysis a base for wheat taxonomy revision, Czech. J. Genet. Plant Breed., 2005, vol. 41, pp. 52—55.CrossRefGoogle Scholar
  44. 44.
    Mac Key, J., Mutagenesis in vulgare wheat, Hereditas, 1968, vol. 59, pp. 505—517.Google Scholar
  45. 45.
    Mac Key, J., Genus Triticum and its systematics, Naslediye Vavilova v sovremennoy biologii (Vavilov’s Legacy in Modern Biology), Shumny, V.K., Ed., Nauka, Moscow, 1989.Google Scholar
  46. 46.
    Swaminathan, M.S. and Rao, M.V.P., Macro-mutations and sub-specific differentiation in Triticum, Wheat Inf. Serv., 1961, vol. 13, pp. 9—11.Google Scholar
  47. 47.
    Hammer, K., Filatenko, A.A. and Pistrick, K., Taxonomic remarks on Triticum L. and ×Triticosecale Wittm., Genet. Resour. Crop Evol., 2011, vol. 58, pp. 3—10.CrossRefGoogle Scholar
  48. 48.
    Mitka, J., Taksonomia linneuszowska w dobie biologii molekularnej, Fragm. Flor. Geobot. Suppl., 2004, vol. 6, pp. 9—31.Google Scholar
  49. 49.
    Liu, X., Ju X., Zhang, F., Pan, J., and Christie, P., Nitrogen dynamics and budgets in a winter wheat—maize cropping system in the North China Plain, Field Crop Res., 2003, vol. 83, pp. 111—124.CrossRefGoogle Scholar
  50. 50.
    Barker, M.K. and Seedhom, B.B., The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime?, Rheumatology, 2001, vol. 40, pp. 274—284.CrossRefGoogle Scholar
  51. 51.
    Neel, M.C. and Cummings, M.P., Section-level relationships of North American Agalinis (Orobanchaceae) based on DNA sequence analysis of three chloroplast gene regions, BMC Evol. Biol., 2004, vol. 4, p. 15.CrossRefGoogle Scholar
  52. 52.
    Caldwell, K.S., Dvorak, J., Lagudah, E.S., et al., Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor, Genetics, 2004, vol. 167, pp. 941—947.CrossRefGoogle Scholar
  53. 53.
    Mori, N., Liu, Y.G., and Tsunewaki, K., Wheat phylogeny determined by RFLP analysis of nuclear DNA: 2. Wild tetraploid wheats, Theor. Appl. Genet., 1995, vol. 90, pp. 129—134.CrossRefGoogle Scholar
  54. 54.
    Tudge, C., The Variety of Life, Oxford: Oxford University Press, 2000.Google Scholar
  55. 55.
    Fedak, G., Alien introgressions from wild Triticum species, T. monococcum, T. urartu, T. turgidum, T. dicoccum, T. dicoccoides, T. carthlicum, T. araraticum, T. timopheevii, and T. miguschovae, in Alien Introgression in Wheat, Springer-Verlag, 2015.Google Scholar
  56. 56.
    Chantret, N., Salse, J., Sabot, F., et al., Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops), Plant Cell, 2005, vol. 17, pp. 1033—1045.CrossRefGoogle Scholar
  57. 57.
    Özkan, H., Tuna, M., Kilian, B., et al., Genome size variation in diploid and tetraploid wild wheats, AoB Plants, 2010. plq015Google Scholar
  58. 58.
    Wenzl, P., Carling, J., Kudrna, D., et al., Diversity Arrays Technology (DArT) for whole-genome profiling of barley, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 9915—9920.CrossRefGoogle Scholar
  59. 59.
    Kimber, G. and Sears, E.R., Evolution in the genus Triticum and the origin of cultivated wheat, in Wheat and Wheat Improvement, Madison, WI: American Society of Agronomy, 1987, 2nd ed.Google Scholar
  60. 60.
    Jakubizner, M.M., New Wheat Species, Winnipeg: The Public Press, 1959.Google Scholar
  61. 61.
    Johnson, B.L., Identification of the apparent B-genome donor of wheat, Can. J. Genet. Cytol., 1975, vol. 17, pp. 21—39.CrossRefGoogle Scholar
  62. 62.
    Moghaddam, M., Ehdaie, B., and Waines, J.G., Genetic diversity in populations of wild diploid wheat Triticum urartu Tum. ex. Gandil. revealed by isozyme markers, Genet. Resour. Crop Evol., 2000, vol. 47, pp. 323—334.CrossRefGoogle Scholar
  63. 63.
    Yaghoobi-Saray, J., An in Triticum-Aegilops Complex Electrophoretic Analysis of Genetic Variation within and between Populations of Five Species, Ph.D. Dissertation, Davis: University of California, 1979.Google Scholar
  64. 64.
    Dudnikov, A.J., Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns, Euphytica, 2003, vol. 129, pp. 89—97.CrossRefGoogle Scholar
  65. 65.
    Lubbers, E.L., Gill, K.S., Cox, T.S., and Gill, B.S., Variation of molecular markers among geographically diverse accessions of Triticum tauschii, Genome, 1991, vol. 34, pp. 354—361.CrossRefGoogle Scholar
  66. 66.
    Kam-Morgan, L.N.W., Gill, B.S., and Muthukrishnan, S., DNA restriction fragment length polymorphisms: a strategy for genetic mapping of D genome of wheat, Genome, 1989, vol. 32, pp. 724—732.CrossRefGoogle Scholar
  67. 67.
    Pestsova, E., Korzun, V., Goncharov, N.P., et al., Microsatellite analysis of Aegilops tauschii germplasm, Theor. Appl. Genet., 2000, vol. 101, pp. 100—106.CrossRefGoogle Scholar
  68. 68.
    Dvorak, J., Luo, M.C., Yang, Z.L., and Zhang, H.B., The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat, Theor. Appl. Genet., 1998, vol. 97, pp. 657—670.CrossRefGoogle Scholar
  69. 69.
    Zohary, D. and Hopf, M., Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley, Oxford, UK: Oxford University Press, 2000, 3rd ed.Google Scholar
  70. 70.
    Jing, H.C., Kornyukhin, D., Kanyuka, K., et al., Identification of variation in adaptively important traits and genome-wide analysis of trait—marker associations in Triticum monococcum, J. Exp. Bot., 2007, vol. 58, pp. 3749—3764.CrossRefGoogle Scholar
  71. 71.
    Tranquilli, G., Heaton, J., Chicaiza, O., and Dubcovsky, J., Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture, Crop Sci., 2002, vol. 42, pp. 1812—1817.CrossRefGoogle Scholar
  72. 72.
    Jing, H.C., Bayon, C., Kanyuka, K., et al., DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum, BMC Genomics, 2009, vol. 10, p. 458.CrossRefGoogle Scholar
  73. 73.
    Castagna, R., Maga, G., Perenzin, M., et al., RFLP-based genetic relationships of einkorn wheats, Theor. Appl. Genet., 1994, vol. 88, pp. 818—823.CrossRefGoogle Scholar
  74. 74.
    Figliuolo, G. and Perrino, P., Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs, Genet. Resour. Crop Evol., 2004, vol. 51, pp. 519—527.CrossRefGoogle Scholar
  75. 75.
    Rashed, M.A., Abou-Deif, M.H., Sallam, M.A.A., et al., Identification and prediction of the flour quality of bread wheat by gliadin electrophoresis, J. Appl. Sci. Res., 2007, vol. 3, pp. 1393—1399.Google Scholar
  76. 76.
    Henkrar, F., El-Haddoury, J., Ouabbou, H., et al., Genetic diversity and its temporal changes in improved bread wheat cultivars of Morocco, Rom. Agric. Res., 2015, vol. 32, pp. 19—25.Google Scholar
  77. 77.
    Moragues, M., Moralejo, M., Sorrells, M.E., and Royo, C., Dispersal of durum wheat [Triticum turgidum L. ssp. turgidum convar. durum (Desf.) MacKey] landraces across the Mediterranean basin assessed by AFLPs and microsatellites, Genet. Resour. Crop Evol., 2007, vol. 54, pp. 1133—1144.CrossRefGoogle Scholar
  78. 78.
    Fahima, T., Röder, M.S., Wendehake, K., et al., Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel, Theor. Appl. Genet., 2002, vol. 104, pp. 17—29.CrossRefGoogle Scholar
  79. 79.
    Ren, J., Sun, D., Chen, L., et al., Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat, Int. J. Mol. Sci., 2013, vol. 14, pp. 7061—7088.CrossRefGoogle Scholar
  80. 80.
    Capparelli, A., Lema, V., Giovannetti, M., and Raffino, R., The introduction of Old World crops (wheat, barley and peach) in Andean Argentina during the 16th century AD: archaeobotanical and ethnohistorical evidence, Veget. Hist. Archaeobot., 2005, vol. 14, pp. 472—484.CrossRefGoogle Scholar
  81. 81.
    Asplund, L., Hagenblad, J., and Leino, M.W., Re-evaluating the history of the wheat domestication gene NAM-B1 using historical plant material, J. Archaeol. Sci., 2010, vol. 37, pp. 2303—2307.CrossRefGoogle Scholar
  82. 82.
    Maccaferri, M., Sanguineti, M.C., Donini, P., and Tuberosa, R., Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm, Theor. Appl. Genet., 2003, vol. 107, pp. 783—797.CrossRefGoogle Scholar
  83. 83.
    Salamini, F., Özkan, H., Brandolini, A., et al., Genetics and geography of wild cereal domestication in the Near East, Nat. Rev. Genet., 2002, vol. 3, pp. 429—441.CrossRefGoogle Scholar
  84. 84.
    Hammer, K., Microsatellite markers—a new tool for distinguishing diploid wheat species, Genet. Resour. Crop Evol., 2000, vol. 47, pp. 497—505.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. Goriewa-Duba
    • 1
    Email author
  • A. Duba
    • 2
  • U. Wachowska
    • 2
  • M. Wiwart
    • 1
  1. 1.Department of Plant Breeding and Seed Production, University of Warmia and MazuryOlsztynPoland
  2. 2.Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and MazuryOlsztynPoland

Personalised recommendations