Advertisement

Russian Journal of Plant Physiology

, Volume 66, Issue 4, pp 509–520 | Cite as

Chloroplast Retrograde Signaling System

  • N. P. YurinaEmail author
  • M. S. Odintsova
REVIEWS
  • 5 Downloads

Abstract

Modern ideas on the nature and functions of plastid retrograde signals, i.e., plastid retrograde signaling, predominantly of chloroplasts, are summarized. The main attention is focused on the participation of plastid retrograde signals in inter- and intracellular signaling pathways and their role in the processes of plant growth and development. The small amount of data on the little-studied retrograde signaling system of plant mitochondria are outlined as well.

Keywords:

higher plants chloroplasts retrograde signals metabolites transcriptional factors 

Notes

FUNDING

The present work was prepared with the partial financial support of the program of the Presidium of the Russian Academy of Sciences no. 18 Molecular and Cell Biology and Postgenome Technologies of the Russian Foundation for Basic Research (grants no. 16-04-01626 and 19-04-00798) and a Ministry of Science and Higher Education of the Russian Federation.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Szechyńska-Hebda, M. and Karpiński, S., Light intensity-dependent retrograde signalling in higher plants, J. Plant Physiol., 2013, vol. 170, pp. 1501–1516.Google Scholar
  2. 2.
    Leister, D., Wang, L., and Kleine, T., Organellar gene expression and acclimation of plants to environmental stress, Front. Plant Sci., 2017, vol. 8: 387.CrossRefGoogle Scholar
  3. 3.
    De Barajas-López, J.D., Blanco, N.E., and Strand, Å., Plastid-to-nucleus communication, signals controlling the running of the plant cell, Biochim. Biophys. Acta, 2013, vol. 1833, pp. 425–437.Google Scholar
  4. 4.
    Sun, A.Z. and Guo, F.Q., Chloroplast retrograde regulation of heat stress responses in plants, Front. Plant Sci., 2016, vol. 7: 398.Google Scholar
  5. 5.
    Chi, W., Feng, P., Ma, J., and Zhang, L., Metabolites and chloroplast retrograde signaling, Curr. Opin. Plant Biol., 2015, vol. 25, pp. 32–38.CrossRefGoogle Scholar
  6. 6.
    Chan, K.X., Phua, S.Y., Crisp, P., McQuinn, R., and Pogson, B.J., Learning the languages of the chloroplast: retrograde signaling and beyond, Annu. Rev. Plant Biol., 2016, vol. 67, pp. 25–53.CrossRefGoogle Scholar
  7. 7.
    Van Aken, O. and Pogson, B.J., Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death, Cell Death Differ., 2017, vol. 24, pp. 955–960.CrossRefGoogle Scholar
  8. 8.
    Chi, W., Sun, X., and Zhang, L., Intracellular signaling from plastid to nucleus, Annu. Rev. Plant Biol., 2013, vol. 64, pp. 559–582.CrossRefGoogle Scholar
  9. 9.
    Börner, T., The discovery of plastid-to-nucleus retrograde signaling—a personal perspective, Protoplasma, 2017, vol. 254, pp. 1845–1855.Google Scholar
  10. 10.
    Page, M.T., McCormac, A.C., Smith, A.G., and Terry, M.J., Singlet oxygen initiates a plastid signal controlling photosynthetic gene expression, New Phytol., 2017, vol. 213, pp. 1168–1180.CrossRefGoogle Scholar
  11. 11.
    Yurina, N.P. and Odintsova, M.S., Plant signaling systems. Plastid-generated signals and their role in nuclear gene expression, Russ. J. Plant Physiol., 2007, vol. 54, pp. 427–438.CrossRefGoogle Scholar
  12. 12.
    Xiao, Y., Wang, J., and Dehesh, K., Review of stress specific organelles-to-nucleus metabolic signal molecules in plants, Plant Sci., 2013, vol. 212, pp. 102–107.CrossRefGoogle Scholar
  13. 13.
    Singh, R., Singh, S., Parihar, P., Singh, V.P., and Prasad, S.M., Retrograde signaling between plastid and nucleus: a review, J. Plant Physiol., 2015, vol. 181, pp. 55–66.CrossRefGoogle Scholar
  14. 14.
    Kleine, T. and Leister, D., Retrograde signaling: organelles go networking, Biochim. Biophys. Acta, 2016, vol. 1857, pp. 1313–1325.CrossRefGoogle Scholar
  15. 15.
    De Souza, A., Wang, J.Z., and Dehesh, K., Retrograde signals: integrators of interorganellar communication and orchestrators of plant development, Annu. Rev. Plant Biol., 2017, vol. 68, pp. 85–108.CrossRefGoogle Scholar
  16. 16.
    Dietzel, L., Gläßer, C., Liebers, M., Hiekel, S., Courtois, F., Czarnecki, O., Schlicke, H., Zubo, Y., Börner, T., Mayer, K., Grimm, B., and Pfannschmidt, T., Identification of early nuclear target genes of plastidial redox signals that trigger the long-term response of Arabidopsis to light quality shifts, Mol. Plant, 2015, vol. 8, pp. 1237–1252.CrossRefGoogle Scholar
  17. 17.
    Bobik, K. and Burch-Smith, T.M., Chloroplast signaling within, between and beyond cells, Front. Plant Sci., 2015, vol. 6: 781.CrossRefGoogle Scholar
  18. 18.
    Zhang, Z.W., Zhang, G.C., Zhu, F., Zhang, D.W., and Yuan, S., The roles of tetrapyrroles in plastid retrograde signaling and tolerance to environmental stresses, Planta, 2015, vol. 242, pp. 1263–1276.CrossRefGoogle Scholar
  19. 19.
    Karpinska, B., Alomrani, S.O., and Foyer, C.H., Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signaling, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, vol. 372: 20160392.  https://doi.org/10.1098/rstb.2016.0392 CrossRefGoogle Scholar
  20. 20.
    Foyer, C.H., Ruban, A.V., and Noctor, G., Viewing oxidative stress through the lens of oxidative signalling rather than damage, Biochem. J., 2017, vol. 474, pp. 877–883.CrossRefGoogle Scholar
  21. 21.
    Rossi, F.R., Krapp, A.R., Bisaro, F., Maiale, S.J., Pieckenstain, F.L., and Carrillo, N., Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea, Plant J., 2017, vol. 92, pp. 761–773.CrossRefGoogle Scholar
  22. 22.
    Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, pp. 141–154.CrossRefGoogle Scholar
  23. 23.
    Sinetova, M.A. and Los, D.A., Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers, Mol. BioSyst., 2016, vol. 12, pp. 3254–3258.CrossRefGoogle Scholar
  24. 24.
    Erickson, J.L., Kantek, M., and Schattat, M.H., Plastid–nucleus distance alters the behavior of stromules, Front. Plant Sci., 2017, vol. 8: 1135.CrossRefGoogle Scholar
  25. 25.
    Whalley, H.J. and Knight, M.R., Calcium signatures are decoded by plants to give specific gene responses, New Phytol., 2013, vol. 197, pp. 690–693.CrossRefGoogle Scholar
  26. 26.
    Kmiecik, P., Leonardelli, M., and Teige, M., Novel connections in plant organellar signalling link different stress responses and signalling pathways, J. Exp. Bot., 2016, vol. 67, pp. 3793–3807.CrossRefGoogle Scholar
  27. 27.
    Gollan, P.J., Tikkanen, M., and Aro, E.M., Photosynthetic light reactions: integral to chloroplast retrograde signaling, Curr. Opin. Plant Biol., 2015, vol. 27, pp. 180–191.CrossRefGoogle Scholar
  28. 28.
    Guo, H., Feng, P., Chi, W., Sun, X., Xu, X., Li, Y., Ren, D., Lu, C., Rochaix, J.D., Leister, D., and Zhang, L., Plastid–nucleus communication involves calcium-modulated MAPK signaling, Nat. Commun., 2016, vol. 7: 12173.CrossRefGoogle Scholar
  29. 29.
    Colombo, M., Tadini, L., Peracchio, C., Ferrari, R., and Pesaresi, P., GUN1, a jack-of-all-trades in chloroplast protein homeostasis and signaling, Front. Plant Sci., 2016, vol. 7: 1427.CrossRefGoogle Scholar
  30. 30.
    Wu, G.Z., Chalvin, C., Hoelscherb, M., Meyer, E.H., Wu, X.N., and Bocka, R., Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1, Plant Physiol., 2018, vol. 176, pp. 2472–2495.CrossRefGoogle Scholar
  31. 31.
    Sun, X., Feng, P., Xu, X., Guo, H., Ma, J., Chi, W., Lin, R., Lu, C., and Zhang, L., A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus, Nat. Commun., 2011, vol. 2: 477.CrossRefGoogle Scholar
  32. 32.
    Adam, Z., Plastid intramembrane proteolysis, Biochim. Biophys. Acta, 2015, vol. 1847, pp. 910–914.CrossRefGoogle Scholar
  33. 33.
    Hirosawa, Y., Ito-Inaba, Y., and Inaba, T., Ubiquitin-proteasome-dependent regulation of bidirectional communication between plastids and the nucleus, Front. Plant Sci., 2017, vol. 8: 310.CrossRefGoogle Scholar
  34. 34.
    Tokumaru, M., Adachi, F., Toda, M., Ito-Inaba, Y., Yazu, F., Hirosawa, Y., Sakakibara, Y., Suiko, M., Kakizaki, T., and Inaba, T., Ubiquitin-proteasome dependent regulation of the GOLDEN2-LIKE 1 transcription factor in response to plastid signals, Plant Physiol., 2017, vol. 173, pp. 524–535.CrossRefGoogle Scholar
  35. 35.
    Martín, G., Leivar, P., Ludevid, D., Tepperman, J., Quail, P.H., and Monte, E., Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network, Nat. Commun., 2016, vol. 7: 11431.Google Scholar
  36. 36.
    Tang, X., Miao, M., Niu, X., Zhang, D., Cao, X., Jin, X., Zhu, Y., Fan, Y., Wang, H., Liu, Y., Sui, Y., Wang, W., Wang, A., Xiao, F., Giovannoni, J., and Liu, Y., Ubiquitin-conjugated degradation of golden 2‑like transcription factor is mediated by CUL4-DDB1-based E3 ligase complex in tomato, New Phytol., 2016, vol. 209, pp. 1028–1039.CrossRefGoogle Scholar
  37. 37.
    Cookson, P.J., Kiano, J.W., Shipton, C.A., Fraser, P.D., Romer, S., Schuch, W., Bramley, P.M., and Pyke, K.A., Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato, Planta, 2003, vol. 217, pp. 896–903.CrossRefGoogle Scholar
  38. 38.
    Huang, D., Lin, W., Deng, B., Ren, Y., and Miao, Y., Dual-located WHIRLY1 interacting with LHCA1 alters photochemical activities of photosystem I and is involved in light adaptation in Arabidopsis, Int. J. Mol. Sci., 2017, vol. 18: 2352.CrossRefGoogle Scholar
  39. 39.
    Ren, Y., Li, Y., Jiang, Y., Wu, B., and Miao, Y., Phosphorylation of WHIRLY1 by CIPK14 shifts its localization and dual functions in Arabidopsis, Mol. Plant, 2017, vol. 10, pp. 749–763.CrossRefGoogle Scholar
  40. 40.
    Kucharewicz, W., Distelfeld, A., Bilger, W., Müller, M., Munné-Bosch, S., Hensel, G., and Krupinska, K., Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1, J. Exp. Bot., 2017, vol. 68, pp. 983–996.CrossRefGoogle Scholar
  41. 41.
    Yurina, N.P., Sharapova, L.S., and Odintsova, M.S., Structure of plastid genomes of photosynthetic eukaryotes, Biochemistry (Moscow), 2017, vol. 82, pp. 678–691.Google Scholar
  42. 42.
    Feng, P., Guo, H., Chi, W., Chai, X., Sun, X., Xu, X., Ma, J., Rochaix, J.D., Leister, D., Wang, H., Lu, C., and Zhang, L., Chloroplast retrograde signal regulates flowering, Proc. Natl. Acad. Sci. USA, 2016, vol. 113, pp. 10708–10713.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Bach Institute of Biochemistry, Federal Research Center Fundamentals of Biotechnology, Russian Academy of SciencesMoscowRussia

Personalised recommendations