Advertisement

Russian Journal of Plant Physiology

, Volume 66, Issue 4, pp 637–645 | Cite as

Role of PIP-Aquaporin Phosphorylation in Redox-Dependent Modulation of Osmotic Water Permeability in Plasmalemma from Roots of Pea Seedlings

  • M. S. Piotrovskii
  • N. K. Lapshin
  • I. M. Andreev
  • M. S. TrofimovaEmail author
RESEARCH PAPERS
  • 12 Downloads

Abstract

Investigations were directed to study the mechanism based on redox-dependent modulation of osmotic water permeability in plasmalemma from roots of pea (Pisum sativum L.) seedlings. This mechanism may be associated with oxidation of cysteine residues in PIP-aquaporins or involves redox-dependent phosphorylation of these proteins. Plasmalemma was isolated by partitioning of microsomal membranes in the aqueous polymer two-phase system and using the roots homogenization medium additionally contained SH-reagents, dithiothreitol or diamide, and also phenylarsin oxide, an inhibitor of tyrosine protein phosphatases. Water permeability of plasmalemma was estimated by the kinetics of light scattering changes of membrane vesicles due to their osmotic shrinkage and recorded by the stopped flow method. In order to elucidate whether PIP-aquaporins contain cysteines available for oxidation by SH-reagents, isolated plasmalemma was subjected to PEGylation (reaction, based on binding of 5 kD methoxypolyethylene glycol maleimide with available membrane proteins SH-groups) and further western blot analysis was performed to reveal shift of aquaporins molecular mass by 5 kD after their immunodetection with antibodies. Relative content of PIP-aquaporin phosphorylated forms in plasmalemma was determined using fluorescent labeling proteins in gels with ProQ Diamond after membrane proteins separation by two-dimensional electrophoresis (blue native (BN/PAGE) in first dimension and denaturing (SDS/PAGE) in second dimension). It was established that conservative cysteines in molecules of PIP-aquaporins are available for SH-reagents only under denaturing conditions. This fact excludes the possibility of these cysteines participation in modulation of plasmalemma osmotic water permeability. Comparative analysis of phosphorylated PIP-aquaporins pool with different redox status of membrane proteins and osmotic water permeability coefficients and also the inhibitor analysis data showed that redox-dependent modulation of these proteins activity is due to their phosphorylation with involvement of serine-threonine protein phosphatases of PP2C type and/or thyrosine protein phosphatases.

Keywords:

Pisum sativum plasmalemma osmotic water permeability dithiothreitol diamide phenylarsin oxide cysteines PIP-aquaporins 5 kD PEG maleimide BN/SDS/PAGE phosphorylation ProQ Diamond 

Notes

FUNDING

This work was supported by the Presidium of the Russian Academy of Sciences “Molecular and Cell Biology” Program.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Martínez-Ballesta, M.C., Rodríguez-Hernández, M.C., Alcaraz-López, C., Mota-Cadenas, C., Muries, B., and Carvajal, M., Plant hydraulic conductivity: the aquaporins contribution, hydraulic conductivity? in Issues, Determination and Applications, Elango, L., Ed., Rijeka: Intech, 2011, pp. 103–121.Google Scholar
  2. 2.
    Maurel, C., Boursiac, Y., Luu, D.T., Santoni, V., Shahzad, Z., and Verdoucq, L., Aquaporins in plants, Physiol. Rev., 2015, vol. 95, pp. 1321–1358.CrossRefGoogle Scholar
  3. 3.
    Foyer, C.H. and Noctor, G., Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ., 2016, vol. 39, pp. 951–964.CrossRefGoogle Scholar
  4. 4.
    Aroca, R., Amodeo, G., Fernández-Illescas, S., Herman, E.M., Chaumont, F., and Chrispeels, M.J., The role of aquaporins and membrane damage in chilling and hydrogen peroxide-induced changes in the hydraulic conductance of maize roots, Plant Physiol., 2005, vol. 137, pp. 341–353.CrossRefGoogle Scholar
  5. 5.
    Lee, S.H., Chung, G.C., and Steudle, E., Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd, J. Exp. Bot., 2005, vol. 56, pp. 985–995.CrossRefGoogle Scholar
  6. 6.
    Velikanov, G.A., Sibgatullin, T.A., Belova, L.P., and Ionenko, I.F., Membrane water permeability of maize root cells under two levels of oxidative stress, Pro-toplasma, 2015, vol. 252, pp. 1263–1273.Google Scholar
  7. 7.
    Waszczak, C., Akter, S., Jacques, S., Huang, J., Messens, J., and van Breusegem, F., Oxidative post-translational modifications of cysteine residues in plant signal transduction, J. Exp. Bot., 2015, vol. 66, pp. 2923–2934.CrossRefGoogle Scholar
  8. 8.
    Ampilogova, Ya.N., Zhestkova, I.M., and Trofimova,  M.S., Redox modulation of osmotic water permeability in plasma membranes isolated from roots and shoots of pea seedlings, Russ. J. Plant Physiol., 2006, vol. 53, pp. 622–628.CrossRefGoogle Scholar
  9. 9.
    Bienert, G.P., Cavez, D., Besserer, A., Berny, M.C., Gilis, D., Rooman, M., and Chaumont, F., A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers, Biochem. J., 2012, vol. 445, pp. 101–111.CrossRefGoogle Scholar
  10. 10.
    Kirscht, A., Survery, S., Kjellbom, P., and Johanson, U., Increased permeability of the aquaporin SoPIP2;1 by mercury and mutations in loop A, Front. Plant Sci., 2012, vol. 7: e1249.  https://doi.org/10.3389/fpls.2016.01249 Google Scholar
  11. 11.
    Santoni, V., Plant aquaporin posttranslational regulation, in Plant Aquaporins: Signaling and Communication in Plants, Chaumont, F. and Tyerman, S., Eds., Berlin: Springer, 2017, pp. 83–106.Google Scholar
  12. 12.
    Schweighofer, A. and Meskiene, I., Phosphatases in plants, Methods Mol. Biol., 2015, vol. 1306, pp. 25–46.CrossRefGoogle Scholar
  13. 13.
    Meinhard, M. and Grill, E., Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Ar-abidopsis, FEBS Lett., 2001, vol. 508, pp. 443–446.CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Toei, M., and Forgac, M., Analysis of the membrane topology of transmembrane segments in the C-terminal hydrophobic domain of the yeast vacuolar ATPase subunit a (Vph1p) by chemical modification, J. Biol. Chem., 2008, vol. 283, pp. 20696–20702.CrossRefGoogle Scholar
  15. 15.
    Reisinger, V. and Eichacker, L.A., How to analyze protein complexes by 2D blue native SDS-PAGE, Proteomics, 2007, vol. 7, pp. 6–16.CrossRefGoogle Scholar
  16. 16.
    Van Heeswijk, M.P. and Van Os, C.H., Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine, J. Membr. Biol., 1986, vol. 92, pp. 183–193.CrossRefGoogle Scholar
  17. 17.
    Zhestkova, I.M., Ampilogova, Ya.N., Shevyreva, T.A., and Trofimova, M.S., Effect of chilling temperatures on osmotic water permeability and aquaporin activity in the plasma membranes from pea roots, Russ. J. Plant Physiol., 2009, vol. 56, pp. 635–641.CrossRefGoogle Scholar
  18. 18.
    Sridharamurthy, M., Kovach, A., Zhao, Y., Zhu, J.K., Xu, H.E., Swaminathan, K., and Melcher, K., H2O2 inhibits ABA-signaling protein phosphatase HAB1, PLoS One, 2014, vol. 9: e113643.  https://doi.org/10.1371/journal.pone.0113643 CrossRefGoogle Scholar
  19. 19.
    Johansson, I., Karlsson, M., Shukla, V.K., Chrispeels, M.J., Larsson, C., and Kjellbom, P., Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation, Plant Cell, 1998, vol. 10, pp. 451–459.CrossRefGoogle Scholar
  20. 20.
    Prak, S., Hem, S., Boudet, J., Viennois, G., Sommerer, N., Rossignol, M., Maurel, C., and Santoni, V., Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP;1 in response to salt stress, Mol. Cell Proteomics, 2008, vol. 7, pp. 1019–1030.CrossRefGoogle Scholar
  21. 21.
    Azad, A.K., Sawa, Y., Ishikawa, T., and Shibata, H., Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals, Plant Cell Physiol., 2014, vol. 45, pp. 608–617.CrossRefGoogle Scholar
  22. 22.
    Fan, W., Li, J., Jia, J., Wang, F., Cao, C., Hu, J., and Mu, Z., Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner, Plant Physiol. Biochem., 2015, vol. 94, pp. 28–34.CrossRefGoogle Scholar
  23. 23.
    Demidchik, V., ROS-activated ion channels in plants: biophysical characteristics, physiological functions and molecular nature, Int. J. Mol. Sci., 2018, vol. 19, no. 4: e1263.  https://doi.org/10.3390/ijms19041263 CrossRefGoogle Scholar
  24. 24.
    Garcia-Mata, C., Wang, J., Gajdanowicz, P., Gonzalez, W., Hills, A., Donald, N., Riedelsberger, J., Amtmann, A., Dreyer, I., and Blatt, M.R., A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2, J. Biol. Chem., 2010, vol. 285, pp. 29286–29294.CrossRefGoogle Scholar
  25. 25.
    Bienert, G.P. and Chaumont, F., Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide, Biochim. Biophys. Acta, 2014, vol. 1840, pp. 1596–1604.CrossRefGoogle Scholar
  26. 26.
    Wudick, M.M., Li, X., Valentini, V., Geldner, N., Chory, J., Lin, J., Maurel, C., and Luu, D.T., Subcellular redistribution of root aquaporins induced by hydrogen peroxide, Mol. Plant, 2015, vol. 8, pp. 1103–1114.CrossRefGoogle Scholar
  27. 27.
    Di Pietro, M., Vialaret, J., Li, G.W., Hem, S., Prado, K., Rossignol, M., Maurel, C., and Santoni, V., Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots, Mol. Cell. Proteomics, 2013, vol. 12, pp. 3886–3989.CrossRefGoogle Scholar
  28. 28.
    Ueda, M., Tsutsumi, N., and Fujimoto, M., Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana, Bio-chem. Biophys. Res. Commun., 2016, vol. 474, pp. 742–746.CrossRefGoogle Scholar
  29. 29.
    Fuchs, S., Grill, E., Meskiene, I., and Schweighofer, A., Type 2C protein phosphatases in plants, FEBS J., 2013, vol. 280, pp. 681–693.CrossRefGoogle Scholar
  30. 30.
    Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., and Maurel, C., Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation, Plant Cell, 2015, vol. 27, pp. 1945–1954.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. S. Piotrovskii
    • 1
  • N. K. Lapshin
    • 1
  • I. M. Andreev
    • 1
  • M. S. Trofimova
    • 1
    Email author
  1. 1.Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscowRussia

Personalised recommendations