Russian Journal of Plant Physiology

, Volume 66, Issue 4, pp 548–555 | Cite as

Content and Composition of Lipids and Their Fatty Acids in Needles of Pinus sylvestris L. and Picea obovata Ledeb. upon Cold Hardening in the Cryolithozone of Yakutia

  • V. V. NokhsorovEmail author
  • L. V. Dudareva
  • K. A. Petrov


The composition of lipids and fatty acids (FAs) and changes in their content in needles of summer- and autumn-vegetating conifer trees growing in the cryolithozone of Yakutia have been studied by thin-layer and gas-liquid chromatography–mass spectrometry. A comparative analysis of the content of total lipids (TL) and phospholipids (PL) has been carried out, and the FA composition of TL in needles of Pinus sylvestris L. and Picea obovata Ledeb. has been determined for summer and autumn periods. In the course of adaptation to low autumn temperatures of the Yakutian cryolithozone, the TL content in needles of P. sylvestris and P. obovata significantly (by 30%) increased compared to the summer season. During this period, the phosphatidylcholine content in needles of both species also increased from 13.8 to 31 mg/g dry wt. For both species, the FA lipid composition of needles included a high content of species-specific unsaturated polymethylene-interrupted fatty acids (Δ5-UPIFA). Increase in the content of TL, PL, total FA, and Δ5-UPIFA observed during a temperature drop significantly exceeds that in plants of these species growing in other parts of Siberia. This fact is probably caused by features of low-temperature adaptation of plants in permafrost ecosystems of Yakutia.


Pinus sylvestris Picea obovata conifers needles lipids phospholipids fatty acids Δ5-unsaturated polymethylene-interrupted fatty acids low temperatures cryolithozone 



The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Ohlorogg, J. and Browse, J., Lipid biosynthesis, Plant Cell, 1995, vol. 7, pp. 957–970.Google Scholar
  2. 2.
    Wang, Z. and Benning, C., Chloroplast lipids synthesis and lipid trafficking through ER-plastid membrane contact sites, Biochem. Soc. Trans., 2012, vol. 40, pp. 457–463.CrossRefGoogle Scholar
  3. 3.
    Schultz, D.J., Suh, M.C., and Ohlrogge, J., Stearoyl–acyl carrier protein and unusual acyl–acyl carrier protein desaturase activities are differentially influenced by ferrodoxin, Plant Physiol., 2000, vol. 124, pp. 681–692.CrossRefGoogle Scholar
  4. 4.
    Kang, J., Snapp, A.R., and Lu, C., Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa, Plant Physiol. Biochem., 2011, vol. 49, pp. 223–229.CrossRefGoogle Scholar
  5. 5.
    Theocharis, A., Clement, C., and Barka, E.A., Physiological and molecular changes in plants grow at low temperatures, Planta, 2012, vol. 235, pp. 1091–1105.CrossRefGoogle Scholar
  6. 6.
    Los, D.A., Desaturazy zhirnykh kislot (Fatty Acid Desaturases), Moscow: Nauch. Mir, 2014.Google Scholar
  7. 7.
    Christie, W.W., Preparation of ester derivatives of fatty acids for chromatographic analysis, in Advances in Lipid Methodology—Two, Christie, W.W., Ed., Dundee: Oily Press, 1993, pp. 69–111.Google Scholar
  8. 8.
    Christie, W.W., The AOCS lipid library: methyl esters of fatty acids, in Archive of Mass Spectra, 2010. Scholar
  9. 9.
    Lyons, J.M., Wheaton, T.A., and Pratt, H.R., Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants, Plant Physiol., 1964, vol. 39, pp. 262–268.CrossRefGoogle Scholar
  10. 10.
    Jaworski, J.G. and Stumpf, P.K., Fat metabolism in higher plants. Properties of a soluble stearyl–acyl carrier protein desaturase from maturing Carthamus tinctorius, Arch. Biochem. Biophys., 1974, vol. 162, pp. 158–165.CrossRefGoogle Scholar
  11. 11.
    Vaskovsky, V.E., Kostetsky, J.M., and Vasendin, E.Y., Universal reagent for determination of phosphorea in lipids, J. Chromatogr., 1975, vol. 114, pp. 129–141.CrossRefGoogle Scholar
  12. 12.
    Wagner, H., Horhammer, L., and Wolf, P., Dunnschicht Chromatographic von Phosphatiden and Glycolipiden, Biochem. Z., 1961, vol. 334, pp. 175–184.Google Scholar
  13. 13.
    Kates, M., Techniques of Lipidology: Isolation, Analysis and Identification of Lipids, North-Holland, 1972.CrossRefGoogle Scholar
  14. 14.
    Alaudinova, E.V. and Mironov, P.V., Seasonal–climatic aspects of the metabolism of coniferous forest species in the Krasnoyarsk Region, Vestn. MANEB, 2009, vol. 14, pp. 197–202.Google Scholar
  15. 15.
    Semenova, N.V., Makarenko, S.P., Shmakov, V.N., Konstantinov, Yu.M., and Dudareva, L.V., Fatty acid composition of total lipids from needles and cultured calluses of conifers Pinus sylvestris L., Picea pungens Engelm., Pinus koraiensis Siebold & Zucc., and Larix sibirica Ledeb., Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 2017, vol. 11, pp. 287–295. Google Scholar
  16. 16.
    Sofronova, V.E., Dymova, O.V., Golovko, T.K., Chepalov, V.A., and Petrov, K.A., Adaptive changes in pigment complex of Pinus sylvestris needles upon cold acclimation, Russ. J. Plant Physiol., 2016, vol. 63, pp. 433–442.CrossRefGoogle Scholar
  17. 17.
    Vereshchagin, A.G., Lipidy v zhizni rastenii (Lipids in Plant Life), Moscow: Nauka, 2007.Google Scholar
  18. 18.
    Selivanov, A.A., Popov, V.N., Antipina, O.V., Pchelkin, V.P., Tsydendambaev, V.D., and Moshkov, I.E., Changes in the content of fatty acid desaturases gene transcripts for Arabidopsis plants under adaptation to hypothermia, Russ. J. Plant Physiol., 2017, vol. 64, pp. 445–451.CrossRefGoogle Scholar
  19. 19.
    Wolff, R.L., Christie, W.W., Pédrono, F., Marpeau, A.M., Tsevegsüren, N., Aitzetmüller, K., and Gunstone, F.D., Δ5-olefinic acids in the seed lipids from four Ephedra species and their distribution between the α and β positions of triacylglycerols. Characteristics common to coniferophytes and cycadophytes, Lipids, 1999, vol. 58, pp. 101–115.Google Scholar
  20. 20.
    Oquist, G., Seasons-induced changes in acyl lipids and fatty acids of chloroplast thylakoids of Pinus sylvestris: a correlation between the level of unsaturation of monogalactosyldiglyceride and the rate of electron transport, Plant Physiol., 1982, vol. 69, pp. 869–875.CrossRefGoogle Scholar
  21. 21.
    Alaudinova, E.V. and Mironov, P.V., Lipids of a meristem of forest forming coniferous breeds of the Central Siberia in conditions low temperature adaptations, Khim. Rastit. Syrya, 2009, pp. 65–76.Google Scholar
  22. 22.
    Makarenko, S.P., Konenkina, T.A., and Suvorova, G.G., Seasonal changes in the fatty acid composition of Pinus sylvestris needle lipids, Russ. J. Plant Physiol., 2014, vol. 61, pp. 119–123.CrossRefGoogle Scholar
  23. 23.
    Roman, A., Andreu, V., and Hernandez, M.L., Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean, J. Exp. Bot., 2012, vol. 63, pp. 4973–4982.CrossRefGoogle Scholar
  24. 24.
    Provart, N.J., Gil, P., and Chen, W., Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures, Plant Physiol., 2003, vol. 132, pp. 893–906.CrossRefGoogle Scholar
  25. 25.
    Kargiotidou, A., Deli, D., and Galanopoulou, D., Temperature and light regulate delta-12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum), J. Exp. Bot., 2008, vol. 59, pp. 2043–2056.CrossRefGoogle Scholar
  26. 26.
    Wolff, R.L., Lavialle, O., Pedrono, F., Pasquier, E., Destaillats, F., Marpeau, A., Angers, P., and Aitzetmuller, K., Abietoid seed fatty acid compositions—a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, Tsuga and preliminary inferences on the taxonomy of Pinaceae, Lipids, 2002, vol. 37, pp. 17–26.CrossRefGoogle Scholar
  27. 27.
    Dobson, G. and Christie, W.W., Mass spectrometry of fatty acid derivatives, Eur. J. Lipid Sci. Technol., 2002, vol. 104, pp. 36–43.Google Scholar
  28. 28.
    Mongrad, S., Badoc, A., Patouille, B., Lacomblez, C., Chavent, M., Cassagne, C., and Bessoule, J.J., Taxonomy of Gymnospermae: multivariate analyses of leaf fatty acid composition, Phytochemistry, 2001, vol. 58, pp. 101–115.CrossRefGoogle Scholar
  29. 29.
    Williams, M., Sanchez, J., Hann, A.C., and Harwood, J.L., Lipid biosynthesis in olive cultures lipid biosynthesis, J. Exp. Bot., 1993, vol. 44, pp. 1717–1723.CrossRefGoogle Scholar
  30. 30.
    Wolff, R.L. and Christie, W.W., Structure, practical sources (gymnosperm seeds), gas-chromatographic data (equivalent chain lengths), and mass spectrometric characteristics of all-cis Δ5-olefinic acids, Eur. J. Lipid Sci. Technol., 2002, vol. 104, pp. 234–244.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Nokhsorov
    • 1
    Email author
  • L. V. Dudareva
    • 2
  • K. A. Petrov
    • 3
  1. 1.North-Eastern Federal UniversityYakutskRussia
  2. 2.Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of SciencesIrkutskRussia
  3. 3.Institute of Biological Problems of the Cryolithozone, Siberian Branch, Russian Academy of SciencesYakutskRussia

Personalised recommendations