Russian Journal of Plant Physiology

, Volume 66, Issue 4, pp 656–663 | Cite as

Effect of Light Intensity on the Morphogenesis of Stevia rebaudiana under In Vitro Conditions

  • O. V. NakonechnayaEmail author
  • I. V. Gafitskaya
  • E. V. Burkovskaya
  • Yu. A. Khrolenko
  • O. V. Grishchenko
  • Yu. N. Zhuravlev
  • E. P. Subbotin
  • Yu. N. Kulchin


A study of the effect of various light intensity (75, 135, 230, and 382 µmol/(m2 s)) on the morphogenesis of Stevia rebaudiana (Bertoni) Bertoni in vitro was carried out using a unique LED light source Sun Box (wavelength range of 440–660 nm) developed at the Institute of Automation and Control Processes (Far East Branch, Russian Academy of Sciences). The light spectrum of the Sun Box was close to the solar spectrum. Luminescent light with an intensity of 49 µmol/(m2 s) was used as a control. It was shown that the cultivation of plantlets using an LED source with an intensity of 75 and 230 µmol/(m2 s) promoted the development of plantlets with a combination of morphological and mesostructural parameters important for microclonal reproduction and/or adaptation to the ground. Such plantlets accumulated the maximal weight of the aerial parts and roots, which was especially important for their subsequent transfer into open ground conditions. Plantlets cultivated at a given light intensity with a developed root system would pass the adaptation process faster and it, in turn, would reduce the percentage of plant mortality. The use of a composite LED light source with a certain intensity during in vitro cultivation of S. rebaudiana would allow optimization of the growing and propagation of plantlets and would reduce energy costs compared with the use of fluorescent lamps.


Stevia rebaudiana in vitro light intensity microcloning leaf mesostructure mesophyll adaptation LEDs 



We are grateful to Lydia Mikhailovna Timasheva, Lead Engineer of the Biotechnology Lab (Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences) for providing S. rebaudiana plantlets for microclonal propagation.


The study was supported by a grant of the Far East Branch of the Russian Academy of Sciences (Far East no. 18-5-079).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Soejarto, D.D., Douglas, K., and Farnsworth, N.R., Potential sweetening agents of plant origin-III. Organoleptic evaluation of Stevia leaf herbarium samples for sweetness, J. Nat. Prod., 1982, vol. 45, pp. 590–599.CrossRefGoogle Scholar
  2. 2.
    Kinghorn, A.D., Soejarto, N.P.D., and Nanayakkara, C.M., A phytochemical screening procedure for sweet entkaurene glycosides in the genus Stevia, J. Nat. Prod., 1984, vol. 47, pp. 439–444.CrossRefGoogle Scholar
  3. 3.
    Melis, M.S., Renal excretion of stevioside in rats, J. Nat. Prod., 1992, vol. 55, pp. 688–690.CrossRefGoogle Scholar
  4. 4.
    Valio, I.F.M. and Rocha, R.F., Effect of photoperiod and growth regulator on growth and flowering of Stevia rebaudiana Bertoni, Jpn. J. Crop Sci., 1977, vol. 46, pp. 243–248.CrossRefGoogle Scholar
  5. 5.
    Jeppesen, P.B., Gregersen, S., and Poulsen, C.R., Stevioside acts directly on pancreatic beta cells to secrete insulin: actions independent of cyclic adenosine monophosphate- and adenosine triphosphate-sensitive K+-channel activity, Metabolism, 2000, vol. 49, pp. 208–214.CrossRefGoogle Scholar
  6. 6.
    Curi, R., Alvarez, M., and Bazotte, R.B., Effect of Stevia rebaudiana on glucose tolerance in normal adult humans, Braz. J. Med. Biol. Res., 1986, vol. 19, pp. 771–774.Google Scholar
  7. 7.
    Pederson, P., Approximate composition of Stevia rebaudiana Bertoni, Nutr. Herbol., 1987, vol. 18, pp. 377–380.Google Scholar
  8. 8.
    Goyal, S.K. and Goyal, R.K., Stevia (Stevia rebaudiana) a bio-sweetener: a review, Int. J. Food Sci. Nutr., 2010, vol. 61, pp. 1–10. CrossRefGoogle Scholar
  9. 9.
    Mitra, A. and Pal, A., In vitro regeneration of Stevia rebaudiana (Bert.) from nodal explants, J. Plant Biochem. Biotechnol., 2007, vol. 16, pp. 59–62.CrossRefGoogle Scholar
  10. 10.
    Abdullateef, R.A. and Osman, M.B., Effects of visible light wavelengths on seed germinability in Stevia rebaudiana Bertoni, Int. J. Biol., 2011, vol. 3, pp. 83–91.CrossRefGoogle Scholar
  11. 11.
    Ramírez-Mosqueda, M.A., Iglesias-Andreu, L.G., and Bautista-Aguilar, J.R., The effect of light quality on growth and development of in vitro plantlet of Stevia rebaudiana Bertoni, Sugar Tech., 2017, vol. 19, pp. 331–336.Google Scholar
  12. 12.
    Zaidan, L.B., Dietrich, S.M., and Felippe, G.M., Effect of photoperiod on flowering and stevioside content in plants of Stevia rebaudiana Bertoni, Jpn. J. Crop Sci., 1980, vol. 49, pp. 569–574.CrossRefGoogle Scholar
  13. 13.
    Ceunen, S., Werbrouck, S., and Geuns, J.M., Stimulation of steviol glycoside accumulation in Stevia rebaudiana by red LED light, J. Plant Physiol., 2012, vol. 169, pp. 749–752.CrossRefGoogle Scholar
  14. 14.
    Bondarev, N.I., Reshetnyak, O.V., and Nosov, A.M., Influence of the spectral composition of visible light and ultraviolet radiation on the development of Stevia rebaudiana Bertoni plants in vitro and biosynthesis of steviol glycosides, Uch. Zap. Orlov. Gos. Univ., Ser. Estest. Tekhnich. Med. Nauki, 2010, vol. 4, pp. 55–62.Google Scholar
  15. 15.
    Evans, J.M., Vallejo, V.A., Beaudry, R.M., and Warner, R.M., Daily light integral influences steviol glycoside biosynthesis and relative abundance of specific glycosides in Stevia, HortScience, 2015, vol. 50, pp. 1479–1485.CrossRefGoogle Scholar
  16. 16.
    Ermakov, E.I. and Kochetov, A.A., Stevia rebaudiana Bertoni plant growth and productivity in controlled conditions depending on photoperiod and light intensity, Dokl. Ross. Akad. S-kh. Nauk, 1994, no. 6, pp. 7–8.Google Scholar
  17. 17.
    Gogichaishvili, N.E., Accumulation of dry above-ground mass and sweet glycosides in Stevia rebaudiana Bertoni plants on different light modes in regulated conditions, IV Mezhd. konf. “Selektsiya, ekologiya, tekhnologiya vozdelyvaniya i pererabotka netraditsionnykh rastenii” (Proc. IV Int. Conf. “Selection, Ecology, Cultivation, and Processing of Untraditional Plants”), Simferopol’, 1996, pp. 94–96.Google Scholar
  18. 18.
    Bondarev, N.I., Reshetnyak, O.V., and Nosov, A.M., Influence of photoperiod and irradiation intensity on the development of Stevia rebaudiana shoots in vitro and synthesis of steviol glycosides, Izv. TSKhA, 2008, no. 4, pp. 102–107.Google Scholar
  19. 19.
    Murashige, T. and Skoog, F., A revised medium for rapid growth and bio-assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.CrossRefGoogle Scholar
  20. 20.
    Khrolenko, Yu.A., Burundukova, O.L., Burkovskaya, E.V., and Zhuravlev, Yu.N., Mesophyll structure and chloroplast density in Panax ginseng leaves from the Sikhote-Alin Mts, Acta Biol. Cracov., Ser. Bot., 2012, vol. 54, pp. 54–60.Google Scholar
  21. 21.
    Goryshina, T.K., Fotosinteticheskii apparat rastenii i usloviya sredy (Photosynthetic Apparatus of Plants and Environment Conditions), Leningrad: Leningrad Gos. Univ., 1989.Google Scholar
  22. 22.
    Nobel, P.S., Zaragoza, G.J., and Smith, W.K., Relation between mesophyll surface area, photosynthetic and illumination level during development for the leaves of Plectranus parviflorus Henckel, Plant Physiol., 1975, vol. 55, pp. 1067–1070.CrossRefGoogle Scholar
  23. 23.
    Tsel'niker, Yu.L., Fiziologicheskie osnovy tenevynoslivosti drevesnykh rastenii (Physiological Basis for the Shade Tolerance of Woody Plants), Moscow: Nauka, 1978.Google Scholar
  24. 24.
    Mokronosov, A.T., Mesostructure and functional activity of photosynthetic apparatus, in Mezostruktura i funktsional’naya aktivnost' fotosinteticheskogo apparata (Mesostructure and Functional Activity of Photosynthetic Apparatus), Sverdlovsk: Ural. Gos. Univ., 1978, pp. 5–30.Google Scholar
  25. 25.
    Mokronosov, A.T., Ontogeneticheskii aspekt fotosinteza (The Ontogenetic Aspect of Photosynthesis), Moscow: Nauka, 1981.Google Scholar
  26. 26.
    Zalenskii, V.R., Materials on quantitative anatomy of different leaves of the same plants, Izv. Kiev Politekh. Inst., 1904, vol. 4, pp. 1–12.Google Scholar
  27. 27.
    Singh, T.C.N., An anatomical and ecological study of some ferns from Mussoorie (North + Western Himalayas), J. Ind. Bot. Soc., 1963, vol. 42, pp. 475–544.Google Scholar
  28. 28.
    Vogelmann, T.C., Plant tissue optics, Annu. Rev. Plant Physiol. Mol. Biol., 1993, vol. 44, pp. 231–251.CrossRefGoogle Scholar
  29. 29.
    Burkovskaya, E.V., Mesostructure of the Mertensia maritima (L.) S.F. Gray plant photosynthetic apparatus at different latitudes of the Russian Far East, Vestn. Krasnoyarsk Gos. Agrar. Univ., 2009, no. 10, pp. 50–53.Google Scholar
  30. 30.
    Vakhrusheva, D.V., Mesostructure of photosynthetic apparatus in C3-plants from the arid zone of Central Asia, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrad, 1989.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. V. Nakonechnaya
    • 1
    Email author
  • I. V. Gafitskaya
    • 1
  • E. V. Burkovskaya
    • 1
  • Yu. A. Khrolenko
    • 1
  • O. V. Grishchenko
    • 1
  • Yu. N. Zhuravlev
    • 1
  • E. P. Subbotin
    • 2
  • Yu. N. Kulchin
    • 2
  1. 1.Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.Institute of Automation and Control Processes, Far East Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations