Advertisement

Russian Journal of Plant Physiology

, Volume 66, Issue 4, pp 572–582 | Cite as

Expression Analysis of Genes Encoding NHX2 Antiporter and Subunit A of Vacuolar H+-ATPase Pump in Salt-Resistant and Salt-Sensitive Barley (Hordeum vulgare L.) Cultivars under Salt Stress

  • F. KargarEmail author
  • A. Niazi
  • M. Fakhrfeshani
  • K. Malekzadeh
RESEARCH PAPERS

Abstract

Salinity is one of the most important factors causing limiting growth aspects. Salinity tolerance is a multigenic trait activating mechanisms such as high H+ pumping activity, like NHX2 that is a tonoplast localized Na+/H+ exchanger and actively transfers the excess sodium ions from the cytoplasm into the vacuole. Vacuolar (v-) H+-ATPase pump is also a tonoplast localized, providing the ATP energy required for tonoplast antiporters. Evaluation of the expression level of HvNHX2 and subunit A of v-H+-ATPase (VHA-A) genes using real-time RT-PCR, in root and shoot tissue of salt-sensitive Reihan and salt-tolerant Afzal barley (Hordeum vulgare L.) cultivars under different salinity concentrations indicated that increasing the concentrations or duration of NaCl stress would decrease the K+/Na ratio that is a signal for cascade responses to the stress but fluctuated expression level of studied genes in some time point. However, promoter analysis of studied genes showed that both have CAAT, TATA and W-box promoter motifs which involve pathogen, salt and ABA-responsive signaling pathways but differed in TC-rich repeats, A-box, TCA-element and GARE-motif that may be one of the reason of observed different.

Keywords:

Hordeum vulgare salinity NHX2 VHA-A real-time RT-PCR 

Notes

ACKNOWLEDGMENTS

The authors would like to acknowledge the Central Laboratory of Biotechnology Institute, University of Shiraz and its personnel for their support and contribution to this study.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Zhang, Y.M., Zhang, H.M., Liu, Z.H., Li, H.C., Guo, X.L., and Li, G.L., The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium, Plant Mol. Biol., 2015, vol. 87, pp. 317–327.CrossRefGoogle Scholar
  2. 2.
    Adem, G.D., Roy, S.J., Plett, D.C., Zhou, M., Bowman, J.P., and Shabala, S., Expressing AtNHX1 in barley (Hordeum vulgare L.) does not improve plant performance under saline conditions, Plant Growth Regul., 2015, vol. 77, pp. 289–297.CrossRefGoogle Scholar
  3. 3.
    Wu, H., Shabala, L., Zhou, M., Stefano, G., Pandolfi, C., Mancuso, S., and Shabala, S., Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley, Planta, 2015, vol. 242, pp. 847–857.CrossRefGoogle Scholar
  4. 4.
    Zhu, M., Zhou, M., Shabala, L., and Shabala, S., Physiological and molecular mechanisms mediating xylem Na+ loading in barley in the context of salinity stress tolerance, Plant Cell Environ., 2017, vol. 40, pp. 1009–1020.CrossRefGoogle Scholar
  5. 5.
    Zhu, J.K., Regulation of ion homeostasis under salt stress, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 441–445.CrossRefGoogle Scholar
  6. 6.
    Bassil, E., Tajima, H., Liang, Y.C., Ohto, M.A., Ushijima, K., Nakano, R., and Blumwald, E., The Ar-abidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction, Plant Cell, 2011, vol. 23, pp. 3482–3497.CrossRefGoogle Scholar
  7. 7.
    Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, R.A., Hasegawa, P.M., and Pardo, J.M., Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response, Plant J., 2002, vol. 30, pp. 529-539.CrossRefGoogle Scholar
  8. 8.
    Barragán, V., Leidi, E.O., Andrés, Z., Rubio, L., De Luca, A., Fernández, J.A., Cubero, B., and Pardo, J.M., Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis, Plant Cell, 2012, vol. 24, pp. 1127–1142.Google Scholar
  9. 9.
    Fakhrfeshani, M., Shahriari-Ahmadi, F., Niazi, A., Moshtaghi, N., and Zare-Mehrjerdi, M., The effect of salinity stress on Na+, K+ concentration, Na+/K+ ratio, electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis, J. Plant Sci. Mol. Breed., 2015, vol. 3, pp. 1–10.Google Scholar
  10. 10.
    Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 2001, vol. 29: e45.CrossRefGoogle Scholar
  11. 11.
    Enders, A. and Lehmann, J., Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar, Commun. Soil Sci. Plant Anal., 2012, vol. 43, pp. 1042–1052.CrossRefGoogle Scholar
  12. 12.
    Yamaguchi-Shinozaki, K. and Shinozaki, K., Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters, Trends Plant Sci., 2005, vol. 10, pp. 88–94.CrossRefGoogle Scholar
  13. 13.
    Galon, Y., Finkler, A., and Fromm, H., Calcium-regulated transcription in plants, Mol. Plant, 2010, vol. 3, pp. 653–669.CrossRefGoogle Scholar
  14. 14.
    Fukuda, A., Chiba, K., Maeda, M., Nakamura, A., Maeshima, M., and Tanaka, Y., Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley, J. Exp. Bot., 2004, vol. 55, pp. 585–594.CrossRefGoogle Scholar
  15. 15.
    Adem, G.D., Roy, S.J., Zhou, M., Bowman, J.P., and Shabala, S., Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley, BMC Plant Biol., 2014, vol. 14: 113.CrossRefGoogle Scholar
  16. 16.
    Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.CrossRefGoogle Scholar
  17. 17.
    Ershov, P.V., Vasekina, A.V., Voblikova, V.D., Taranov, V.V., Roslyakova, T.V., and Babakov, A.V., Identification of K+/H+ antiporter homolog in barley: expression in cultivars with different tolerance to NaCl, Russ. J. Plant Physiol., 2007, vol. 54, pp. 16–24.CrossRefGoogle Scholar
  18. 18.
    Fan, T.W., Higashi, R.M., Norlyn, J., and Epstein, E., In vivo 23Na and 31P NMR measurement of a tonoplast Na+/H+ exchange process and its characteristics in two barley cultivars, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 9856–9860.CrossRefGoogle Scholar
  19. 19.
    Binzel, M.L., NaCl-induced accumulation of tonoplast and plasma membrane H+-ATPase message in tomato, Physiol. Plant., 1995, vol. 94, pp. 722–728.CrossRefGoogle Scholar
  20. 20.
    Shabala, S., Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops, Ann. Bot., 2013, vol. 112, pp. 1209–1221.CrossRefGoogle Scholar
  21. 21.
    Bonales-Alatorre, E., Pottosin, I., Shabala, L., Chen, Z.H., Zeng, F., Jacobsen, S.E., and Shabala, S., Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa, Int. J. Mol. Sci., 2013, vol. 14, pp. 9267–9285.CrossRefGoogle Scholar
  22. 22.
    Bassil, E., Ohto, M.A., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T., and Blumwald, E., The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development, Plant Cell, 2011, vol. 23, pp. 224–239.CrossRefGoogle Scholar
  23. 23.
    Gorham, R.G., Papa, R., and Aloy-Lleonart, M., Varietal differences in Na+ uptake in barley cultivars exposed to soil salinity or salt spray, J. Exp. Bot., 1994, vol. 45, pp. 895–901.CrossRefGoogle Scholar
  24. 24.
    Flowers, T.J., Troke, P.F., and Yeo, A.R., The mechanism of salt tolerance in halophytes, Annu. Rev. Plant Physiol., 1977, vol. 28, pp. 89–121.CrossRefGoogle Scholar
  25. 25.
    Khatun, S. and Flowers, T.J., Effect of salinity on seed set in rice, Plant Cell Environ., 1995, vol. 18, pp. 61–67.CrossRefGoogle Scholar
  26. 26.
    Keshavarz, Y., Noorani, A.H., Emadi, A., and Borzoo, A., The effects of salinity on some of the physiological characteristics and growth of two barley cultivars, Plant Ecosyst., 2010, vol. 20, pp. 43–53.Google Scholar
  27. 27.
    Kasai, M., Yamamoto, Y., and Matsumoto, H., In vivo treatment of barley roots with vanadate increases vacuolar H+-translocating ATPase activity of the tonoplast-enriched membrane vesicles and the level of endogenous ABA, Plant Cell Physiol., 1994, vol. 35, pp. 291–295.CrossRefGoogle Scholar
  28. 28.
    Shi, H. and Zhu, J.K., Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid, Plant Mol. Biol., 2002, vol. 50, pp. 543–550.CrossRefGoogle Scholar
  29. 29.
    Moghadam, A.A., Ebrahimie, E., Taghavi, S.M., Niazi, A., Babgohari, M.Z., Deihimi, T., Djavaheri, M., and Ramezani, A., How the nucleus and mitochondria communicate in energy production during stress: nuclear MtATP6, an early-stress responsive gene, regulates the mitochondrial F1F0-ATP synthase complex, Mol. Biotechnol., 2013, vol. 54, pp. 756–769.CrossRefGoogle Scholar
  30. 30.
    Zhao, F.Y., Zhang, X.J., Li, P.H., Zhao, Y.X., and Zhang, H., Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1, Mol. Breed., 2006, vol. 17, pp. 341–353.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • F. Kargar
    • 1
    Email author
  • A. Niazi
    • 1
  • M. Fakhrfeshani
    • 2
  • K. Malekzadeh
    • 3
  1. 1.Institute of Biotechnology, College of Agriculture, Shiraz UniversityShirazIran
  2. 2.Department of Plant Biotechnology, Jahrom UniversityJahromIran
  3. 3.Department of Genetics and Crop Production, Faculty of Agriculture, Vali-e-Asr UniversityRafsanjanIran

Personalised recommendations