Advertisement

Russian Journal of Plant Physiology

, Volume 66, Issue 4, pp 583–590 | Cite as

Expression Profiles of P5CS and DREB2 Genes under Salt Stress in Aegilops cylindrica

  • M. Arabbeigi
  • A. ArzaniEmail author
  • M. M. Majidi
RESEARCH PAPERS
  • 26 Downloads

Abstract

Aegilops cylindrica Host. is a salt-tolerant wild relative of wheat. The expression of AecDREB2 and AecP5CS genes involved in salinity tolerance was investigated. Salt stress caused significant upregulation of AecDREB2 expression while it did not affect the transcripts of AecP5CS. Despite no significant difference in the AecDREB2 expression in the root and shoot tissues, the AecP5CS transcription profiles of the shoots was much higher than the roots supporting our data of proline accumulation in these tissues. In addition, the homology between AecP5CS and TaP5CS as well as between AecDREB2 and AetDREB2 may suggest the location of our studied genes in the D genome of Ae. cylindrica and a clear orthologous relationship. It is concluded that proline did not play an explicit role in the adaptation response of Ae. cylindrica to a high level of salt stress, while DREB2 plays a pivotal role in the regulatory network of salt tolerance in this species.

Keywords:

Aegilops cylindrica transcription factor DREB2 salinity tolerance P5CS 

Notes

ACKNOWLEDGMENTS

The authors thankfully acknowledge the expert technical assistance of Dr. M. Talebi. We would also like to acknowledge the financial support provided by the Isfahan University of Technology (project no. 91-03-18/9275).

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

11183_2019_8063_MOESM1_ESM.pdf (217 kb)
11183_2019_8063_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    Arabbeigi, M., Arzani, A., Majidi, M.M., Kiani, R., Sayed Tabatabaei, B.E., and Habibi, F., Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers, Acta Physiol. Plant., 2014, vol. 36, pp. 2243–2251.CrossRefGoogle Scholar
  2. 2.
    Arabbeigi, M., Arzani, A., Majidi, M.M., Kiani, R., Sayed Tabatabaei, B.E., and Saha, P., Expression pattern of salt tolerance-related genes in Aegilops cylindrica, Physiol. Mol. Biol. Plant., 2018, vol. 24, pp. 61–73.CrossRefGoogle Scholar
  3. 3.
    Arzani, A. and Ashraf, M., Smart engineering of genetic resources for enhanced salinity tolerance in crop plants, Crit. Rev. Plant. Sci., 2016, vol. 35, pp. 146–189.CrossRefGoogle Scholar
  4. 4.
    Ashraf, M. and Harris, P.J.C., Potential biochemical indicators of salinity tolerance in plants, Plant Sci., 2004, vol. 166, pp. 3–16.CrossRefGoogle Scholar
  5. 5.
    Mansour, M.M.F. and Ali, E.F., Evaluation of proline functions in saline conditions, Phytochemistry, 2017, vol. 140, pp. 52–68.CrossRefGoogle Scholar
  6. 6.
    Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., and Ahmad, A., Role of proline under changing environment—a review, Plant Signal. Behav., 2012, vol. 7, pp. 1456–1466.CrossRefGoogle Scholar
  7. 7.
    Bendaly, A., Messed, D., Smaoui, A., Ksoui, R., Bouchereau, A., and Abdelly, C., Physiological and leaf metabolome changes in the xerophyte species Atri-plex halimus induced by salinity, Plant Physiol. Bi-ochem., 2016, vol. 103, pp. 208–218.CrossRefGoogle Scholar
  8. 8.
    Bagdi, D.L., Shaw, B.P., Sahu, B.B., and Purohit, G.K., Real-time PCR expression analysis of gene encoding, P5CS enzyme and proline metabolism under NaCl salinity in rice, J. Environ. Biol., 2015, vol. 36, pp. 955–961.Google Scholar
  9. 9.
    Zheng, L., Dang, Z., Li, H., Zhang, H., Wu, S., and Wang, Y., Isolation and characterization of Δ1-pyrroline-5-carboxylate synthetase (NtP5CS) from Nitraria tangutorum Bobr. and functional comparison with its Arabidopsis homologue, Mol. Biol. Rep., 2014, vol. 41, pp. 563–572.CrossRefGoogle Scholar
  10. 10.
    Jovanović, Z., Stanisavljević, N., Mikić, A., Radović, S., and Maksimović, V., The expression of drought responsive element binding protein (DREB2A) related gene from pea (Pisum sativum L.) as affected by water stress, Aust. J. Crop Sci., 2013, vol. 7, pp. 1590–1596.Google Scholar
  11. 11.
    Lata, C. and Prasad, M., Role of DREBs in regulation of abiotic stress response in plants, J. Exp. Bot., 2011, vol. 62, pp. 4731–4748.CrossRefGoogle Scholar
  12. 12.
    Bates, L.S., Waldern, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.CrossRefGoogle Scholar
  13. 13.
    Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method, Methods, 2002, vol. 25, pp. 402–408.CrossRefGoogle Scholar
  14. 14.
    Sazegari, S. and Niazi, A., Isolation and molecular characterization of wheat (Triticum aestivum) dehydration responsive element binding factor (DREB) isoforms, Aust. J. Crop. Sci., 2012, vol. 6, pp. 1037–1044.Google Scholar
  15. 15.
    Mondini, L., Nachit, M.M., and Pagnotta, M.A., Allelic variants in durum wheat (Triticum turgidum L. var. durum) DREB genes conferring tolerance to abiotic stresses, Mol. Genet. Genomics, 2015, vol. 290, pp. 531–544.CrossRefGoogle Scholar
  16. 16.
    Rai, A.N. and Penna, S., Molecular evolution of plant P5CS gene involved in proline biosynthesis, Mol. Biol. Rep., 2013, vol. 40, pp. 6429–6435.CrossRefGoogle Scholar
  17. 17.
    Cong, L.L., Zhang, X.Q., Yang, F.Y., Liu, S.J., and Zhang, Y.W., Isolation of the P5CS gene from reed canary grass and its expression under salt stress, Genet. Mol. Res., 2014, vol. 13, pp. 9122–9133.CrossRefGoogle Scholar
  18. 18.
    Li, H., Guo, H., Zhang, X., and Fu, J., Expression profiles of Pr5CS1 and Pr5CS2 genes and proline accumulation under salinity stress in perennial ryegrass (Lolium perenne L.), Plant Breed., 2014, vol. 133, pp. 243–249.CrossRefGoogle Scholar
  19. 19.
    Das, P., Nutan, K.K., Singla-Pareek, S.L., and Pareek, A., Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice, Front. Plant Sci., 2015, vol. 6: 712.Google Scholar
  20. 20.
    Munns, R. and Gilliham, M., Salinity tolerance of crops—what is the cost? New Phytol., 2015, vol. 208, pp. 668–673.CrossRefGoogle Scholar
  21. 21.
    Wang, H., Wang, H., Shao, H., and Tang, X., Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology, Front. Plant Sci., 2016, vol. 7: 67.Google Scholar
  22. 22.
    Chen, H., Liu, L., Wang, L., Wang, S., and Cheng, X., VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana, J. Plant. Res., 2016, vol. 129, pp. 263–273.CrossRefGoogle Scholar
  23. 23.
    Gumi, A.M., Guha, P.K., Mazumder, A., Jayaswal, P., and Mondal, T.K., Characterization of OglDREB2A gene from African rice (Oryza glaberrima), comparative analysis and its transcriptional regulation under salinity stress, 3 Biotech., 2018, vol. 8: 91.Google Scholar
  24. 24.
    Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K., AP2/ERF family transcription factors in plant abiotic stress responses, Biochim. Biophys. Acta, 2012, vol. 1819, pp. 86–96.CrossRefGoogle Scholar
  25. 25.
    Zandkarimi, H., Ebadi, A., Salami, S.A., Alizade, H., and Baisakh, N., Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in grape (Vitis vinifera L.), PLoS One, 2015, vol. 10, no. 7: e0134288.CrossRefGoogle Scholar
  26. 26.
    Wang, M., Zhuang, J., Zou, Z., Li, Q., Xin, H., and Li, X., Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana, J. Plant Biol., 2017, vol. 60, pp. 452–461.CrossRefGoogle Scholar
  27. 27.
    Gupta, K., Jha, B., and Agarwal, P.K., A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco, Mar. Biotech., 2014, vol. 16, pp. 657–673.CrossRefGoogle Scholar
  28. 28.
    Licausi, F., Ohme-Takagi, M., and Perata, P., APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs, New Phytol., 2013, vol. 199, pp. 639–649.CrossRefGoogle Scholar
  29. 29.
    Zhang, X., Liu, X., Wu, L., Yu, G., Wang, X., and Ma, H., The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco, Int. J. Genomics, 2015.  https://doi.org/10.1155/2015/875497

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of TechnologyIsfahanIran

Personalised recommendations