Russian Journal of Plant Physiology

, Volume 66, Issue 3, pp 384–392 | Cite as

Photosynthetic Pigments in Native Plants of the Taiga Zone at the European Northeast Russia

  • O. V. DymovaEmail author
  • T. K. Golovko


The content and composition of photosynthetic pigments in 160 plant species representing the native flora of the taiga zone in European Northeast Russia were investigated. The amounts and proportions of chlorophylls and carotenoids were shown to depend on plant species, life form, and the attribution of plants to particular geographical and ecological–coenotic groups. On the whole, terrestrial plants of the taiga zone accumulated relatively low amounts of chlorophyll: 2–6 mg/g dry wt. The chlorophyll content in leaves of herbaceous species was 1.5 times larger than in woody plants. The relative content of light-harvesting (antenna) chlorophyll accounted for 55–65% of the total pool of green pigments. The vegetation of the Subpolar Ural mountains, comprising a substantial proportion of arctic and arctic–alpine species, was characterized by the chlorophyll/carotenoid ratio equal to 3. In plants inhabiting the middle Vychegda basin, where boreal species dominated, the chlorophyll/carotenoid ratio was 35% higher than in the Subpolar Ural mountains plants. Despite significant interspecific differences in the content of photosynthetic pigments, the relative content of carotenoids tended to increase in the row: boreal–hypoarctic–arctic and arctic–alpine species. This trend indicates the increasing protective role of carotenoids along with the passage of plants to the north.


higher plants photosynthetic pigments chlorophylls carotenoids taiga zone life form latitudinal group species diversity 



This work was supported by the state program А17-117033010038-7 for the Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences, and by the program АААА-А18-118012290132-0 for the Ural Branch, Russian Academy of Sciences.


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Mokronosov, A.T., Plant physiology at the threshold of the twenty-first century, Russ. J. Plant Physiol., 2000, vol. 47, pp. 301–302.Google Scholar
  2. 2.
    Mokronosov, A.T., Mesostructure and functional activity of the photosynthetic apparatus, in Mezostruktura i funktsional’naya aktivnost' fotosinteticheskogo apparata (Mesostructure and Functional Activity of the Photosynthetic Apparatus), Mokronosov, A.T., Borzenkova, R.A., Tsel’niker, Yu.L., and Nekrasova, G.F., Eds., Sverdlovsk: Ural Gos. Univ., 1978, pp. 5–15.Google Scholar
  3. 3.
    Mokronosov, A.T., Ontogeneticheskii aspekt fotosinteza (Ontogenetic Aspect of Photosynthesis), Moscow: Nauka, 1981.Google Scholar
  4. 4.
    Glick, R.E., Minimum photosynthetic unit size in system-I and system-II of barley chloroplasts, Biochim. Biophys. Acta, 1988, vol. 934, pp. 151–155.CrossRefGoogle Scholar
  5. 5.
    Melis, A., Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency, Plant Sci., 2009, vol. 177, pp. 272–280.CrossRefGoogle Scholar
  6. 6.
    Voronin, P.Yu., Efimtsev, E.I., Vasil’ev, A.A., Vatkovskii, O.S., and Mokronosov, A.T., Projective plane chlorophyll content and the biological diversity of vegetation in the main geobotanic zones of Russia, Russ. J. Plant Physiol., 1995, vol. 42, pp. 262–268.Google Scholar
  7. 7.
    Voronin, P.Yu., Continental vegetation cover as a global factor for the photosynthetic flow of atmospheric carbon and the emission of organic carbon during the aridization of the climate of Northern Eurasia, in Fotosintez: fiziologiya, ontogenez, ekologiya (Photosynthesis: Physiology, Ontogeny, Ecology), Ron’zhina, E.S., Ed., Kaliningrad, 2009, pp. 52–125.Google Scholar
  8. 8.
    Lyubimenko, V.N., Izbrannye trudy. Raboty po fotosintezu i pigmentam rastenii (Selected Works. Works on Photosynthesis and Plant Pigments), Kiev: Akad. Nauk UkrSSR, 1963, vol. 2.Google Scholar
  9. 9.
    Larcher, W., Physiological Plant Ecology. Ecophysiology and Stress Physiology of Functional Groups, Berlin: Springer-Verlag, 2003.Google Scholar
  10. 10.
    Luk'yanova, L.M., Lokteva, T.N., and Bulycheva, T.M., Gazoobmen i pigmentnaya sistema rastenii Kol’skoi Subarktiki (Khibinskii gornyi massiv) (Gas Exchange and Pigment System of Plants of the Kola Subarctic (Khibinsky Mountain Range)), Voznesenskii, V.L., Ed., Apatity: Kol’sk. Nauch. Tsentr, Ross. Akad. Nauk, 1986.Google Scholar
  11. 11.
    Buinova, M.G., Pigments of Western Transbaikalia Plants, Bot. Zh., 1987, vol. 72, no. 8, pp. 1089–1097.Google Scholar
  12. 12.
    Popova, I.A., Maslova, T.G., and Popova, O.F., Features of the pigment apparatus of plants from different botanical and geographical zones, in Ekologo-fiziologicheskie issledovaniya fotosinteza i dykhaniya rastenii (Ecological and Physiological Studies of Photosynthesis and Plant Respiration), Semikhatova, O.A., Ed., Leningrad: Nauka, 1989, pp. 115–130.Google Scholar
  13. 13.
    Maslova, T.G. and Popova, I.A., Adaptive properties of the pigment systems, Photosynthetica, 1993, vol. 29, pp. 195–203.Google Scholar
  14. 14.
    Golovko, T.K., Dymova, O.V., and Tabalenkova, G.N., Pigment apparatus of Subpolar Ural plants, Bot. Zh., 2007, vol. 92, no. 11, pp. 1732–1741.Google Scholar
  15. 15.
    Golovko, T.K., Dal’ke, I.V., Dymova, O.V., Zakhozhii, I.G., and Tabalenkova, G.N., Pigment complex of natural flora plants of the European North-East, Izv. Komi Nauch. Tsentra, Ural. Otd., Ross. Akad. Nauk, 2010, no. 1, pp. 39–46.Google Scholar
  16. 16.
    Slemnev, N.N., Sheremet’ev, S.N., Maslova, T.G., Tsoozh, Sh., and Altantsoozh, A., Variety of photosynthetic plant apparatus of Mongolia: analysis of biological, ecological and evolutionary series, Bot. Zh., 2012, vol. 97, no. 11, pp. 1377–1396.Google Scholar
  17. 17.
    Ivanov, L.A., Ivanova, L.A., Ronzhina, D.A., and Yudina, P.K., Changes in the chlorophyll and carotenoid contents in the leaves of steppe plants along a latitudinal gradient in South Ural, Russ. J. Plant Physiol., 2013, vol. 60, pp. 812–820.CrossRefGoogle Scholar
  18. 18.
    Markovskaya, E.F. and Shmakova, N.Yu., Rasteniya i lishainiki Zapadnogo Shpitsbergena: ekologiya, fiziologiya (Plants and Lichens of West Svalbard: Ecology and Physiology), Petrozavodsk: Petrozavod. Gos. Univ., 2017.Google Scholar
  19. 19.
    Kozubov, G.M., Martynenko, V.A., Degteva, S.V., Galenko, E.P., and Zaboeva, I.V., Forest vegetation zoning of the Komi Republic, in Lesa Respubliki Komi (Forests in the Komi Republic), Kozubov, G.M. and Taskaev, A.I., Eds., Moscow: Izd. Tsentr “Dizain, Informatsiya, Kartografiya,” 1999, pp. 257–288.Google Scholar
  20. 20.
    Biologicheskoe raznoobrazie Respubliki Komi (Biodiversity in the Komi Republic), Ponomarev, V.I. and Tatarinov, A.G., Eds., Syktyvkar: Inst. Biol., Komi Nauch. Tsentr, Ural Otd., Ross. Akad. Nauk, 2012.Google Scholar
  21. 21.
    Flory, likheno- i mikobioty osobo okhranyaemykh landshaftov basseinov rek Kos’yu i Bol’shaya Synya (Pripolyarnyi Ural, natsional’nyi park “Yugyd va”) (Flora, Lichen- and Mycobiota of Specially Protected Landscapes of the Kosyu and Bolshaya Synya River Basins (Subpolar Urals, National Park “Yugyd va”)), Degteva, S.V., Ed., Moscow: KMK, 2016.Google Scholar
  22. 22.
    Serebryakov, I.G., Life forms of higher plants and their study, in Polevaya geobotanika (Field Geobotany), Leningrad: Nauka, 1964, vol. 3, pp. 146–205.Google Scholar
  23. 23.
    Flora evropeiskogo Severo-Vostoka (Flora of the European Northeast), Leningrad: Nauka, 1976, vol. 3.Google Scholar
  24. 24.
    Papchenkov, V.G., On the classification of macrophytes of water bodies and aquatic vegetation, Ekologiya, 1985, no. 6, pp. 8–13.Google Scholar
  25. 25.
    Maslova, T.G., Popova, I.A., and Popova, O.F., Critical evaluation of the spectrophotometric method for quantification of carotenoids, Sov. Plant Physiol., 1986, vol. 33, pp. 615–619.Google Scholar
  26. 26.
    Vanchikova, E.V., Kondratenok, B.M., Zakhozhii, I.G., and Kuzivanova, O.A., Metodika izmerenii massovoi doli pigmentov spektrofotometricheskim metodom (fiksatsiya i ekstraktsiya dimetilketonom) (Methods of Measuring the Mass Fraction of Pigments by the Spectrophotometry (Fixation and Extraction with Dimethyl Ketone)), certificate FR.1.31.2014.19218, no. 88-17641-077-2014, by October 2, 2014, Syktyvkar: Inst. Biol., Komi Nauch. Tsentr, Ural Otd., Ross. Akad. Nauk, 2014.Google Scholar
  27. 27.
    Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, in Methods in Enzymology, Colowick, S.P. and Kaplan, N.O., Eds., San Diego: Academic, 1987, pp. 350–382.Google Scholar
  28. 28.
    Golovko, T.K., Dal’ke, I.V., Tabalenkova, G.N., and Garmash, E.V., Respiration of the Subpolar Ural plants, Bot. Zh., 2009, vol. 94, no. 8, pp. 1216–1226.Google Scholar
  29. 29.
    Goryshina, T.K., Fotosinteticheskii apparat rastenii i usloviya sredy (Plant Photosynthetic Apparatus and Environmental Conditions), Leningrad: Leningrad Gos. Univ., 1989.Google Scholar
  30. 30.
    Ivanov, L.A., Ronzhina, D.A., and Ivanova, L.A., Changes in leaf characteristics as indicator of the alteration of functional types of steppe plants along the aridity gradient, Russ. J. Plant Physiol., 2008, vol. 55, pp. 301–307.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations