Russian Journal of Plant Physiology

, Volume 65, Issue 6, pp 813–823 | Cite as

Age- and Organ-Specific Differences of Potato (Solanum phureja) Plants Metabolome

  • R. K. Puzanskiy
  • V. V. Yemelyanov
  • A. L. Shavarda
  • T. A. Gavrilenko
  • M. F. ShishovaEmail author
Research Papers


Potato Solanum phureja Juz. & Bukasov crop species' metobolome at the flowering stage includes 234 compounds, 117 of which were identified. The most represented group among them contains sugars and their derivatives that are in accordance with intensive carbohydrate exchange of potato tissues and organs. Young leaves and developing reproductive organs are characterized by a wide spectrum of organic and amino acids, nitrogen-containing compounds, and lipids as well as compounds of secondary metabolism that may indicate the intensity of metabolic processes and the formation of defense mechanisms. Depletion of metabolites’ profile in senescent leaves agrees with the idea of weakening synthetic processes in them and the onset of metabolites’ outflow to new forming attracting potato organs. Specificity of metabolic profiles, which corresponds to age and physiological status of potato organ or tissue, was revealed.


Solanum phureja metabolome metabolite profile gas chromatography coupled with mass-spectrometry (GC-MS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11183_2018_7033_MOESM1_ESM.pdf (1.3 mb)
Age and Organ Specific Changes in Metabolome of Potato Plants Solanum phureja


  1. 1.
    Genome sequence and analysis of the tuber crop potato. The Potato Genome Sequencing Consortium, Nature, 2011, vol. 475, pp. 189–195. doi 10.1038/nature10158CrossRefGoogle Scholar
  2. 2.
    Dobson, G., Shepherd, T., Verrall, S.R., Griffiths, W.D., Ramsay, G., McNicol, J.W., Davies, H.V., and Stewart, D., A metabolomics study of cultivated potato (Solanum tuberosum) groups Andigena, Phureja, Stenotomum, and Tuberosum using gas chromatography–mass spectrometry, J. Agric. Food Chem., 2010, vol. 58, pp. 1214–1223. doi 10.1021/jf903104bCrossRefPubMedGoogle Scholar
  3. 3.
    Liu, Y., Lin-Wang, K., Deng, C., Warran, B., Wang, L., Yu, B., Yang, H., Wang, J., Espley, R.V., Zhang, J., Wang, D., and Allan, A.C., Comparative transcriptome analysis of white and purple potato to identify genes involved in anthocyanin biosynthesis, PLoS One, 2015, vol. 10: e0129148. doi 10.1371/journal.pone.0129148CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shepherd, L.V.T., Alexander, C.A., Sungurtas, J.A., McNicol, J.W., Stewart, D., and Davies, H.V., Metabolomic analysis of the potato tuber life cycle, Metabolomics, 2010, vol. 6, pp. 274–291. doi 10.1007/s11306-009-0183-1CrossRefGoogle Scholar
  5. 5.
    Boughton, B.A., Thinagaran, D., Sarabia, D., Bacic, A., and Roessner, U., Mass spectrometry imaging for plant biology: a review, Phytochem. Rev., 2016, vol. 15, pp. 445–488. doi 10.1007/s11101-015-9440-2CrossRefPubMedGoogle Scholar
  6. 6.
    Obata, T. and Fernie, A.R., The use of metabolomics to dissect plant responses to abiotic stresses, Cell Mol. Life Sci., 2012, vol. 69, pp. 3225–3243. doi 10.1007/s00018-012-1091-5CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nakabayashi, R. and Saito, K., Integrated metabolomics for abiotic stress responses in plants, Curr. Opin. Plant Biol., 2015, vol. 24, pp. 10–16. doi 10.1016/j.pbi.2015.01.003CrossRefPubMedGoogle Scholar
  8. 8.
    Kushalappa, A.C. and Gunnaiah, R., Metabolo-proteomics to discover plant biotic stress resistance genes, Trends Plant Sci., 2013, vol. 18, pp. 522–531. doi 10.1016/j.tplants.2013.05.002CrossRefPubMedGoogle Scholar
  9. 9.
    Frank, T. and Engel, K., Metabolomic analysis of plants and crops, in Metabolomics in Food and Nutrition, Weimer, B.C. and Slupsky, C.M., Eds., Amsterdam: Elsevier, 2013, pp. 148–191. doi 10.1533/9780857098818.2.148CrossRefGoogle Scholar
  10. 10.
    Kotlova, E.R., Puzanskii, R.K., Danchul, T.Yu., Shagova, L.I., Pautova, I.A., and Shavarda, A.L., Agastache mexicana (Lamiaceae) as a model for study of plant secondary metabolism by the metabolomic methods, Rastit. Resur., 2016, vol. 52, pp. 591–609.Google Scholar
  11. 11.
    Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N., and Willmitzer, L., Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry, Plant J., 2000, vol. 23, pp. 131–142. doi 10.1046/j.1365-313x.2000.00774.xCrossRefPubMedGoogle Scholar
  12. 12.
    Puzanskiy, R.K., Emel’yanov, V.V., Gavrilenko, T.A., and Shishova, M.F., The perspectives of metabolomic studies of potato plants, Russ. J. Genet.: Appl. Res., 2017, vol. 7, no. 7, pp. 744–756.CrossRefGoogle Scholar
  13. 13.
    Brunetti, C., George, R.M., Tattini, M., Field, K., and Davey, M.P., Metabolomics in plant environmental physiology, J. Exp. Bot., 2013, vol. 64, pp. 4011–4020. doi 10.1093/jxb/ert244CrossRefPubMedGoogle Scholar
  14. 14.
    Abu-Nada, Y., Kushalappa, A.C., Marshall, W.D., Al-Mughrabi, K., and Murphy, A., Temporal dynamics of pathogenesis-related metabolites and their plausible pathways of induction in potato leaves following inoculation with Phytophthora infestans, Eur. J. Plant Pathol., 2007, vol. 118, pp. 375–391. doi 10.1007/s10658-007-9150-8CrossRefGoogle Scholar
  15. 15.
    Tomita, S., Ikeda, S., Tsuda, S., Someya, N., Asano, K., Kikuchi, J., Chikayama, E., Ono, H., and Sekiyama, Y., A survey of metabolic changes in potato leaves by NMRbased metabolic profiling in relation to resistance to late blight disease under field conditions, Magn. Reson. Chem., 2017, vol. 55, pp. 120–127. doi 10.1002/mrc.4506CrossRefPubMedGoogle Scholar
  16. 16.
    Kloosterman, B., Anithakumari, A.M., Chibon, P.-Y., Oortwijn, M., van der Linden, G.C., Visser, R.G.F., and Bachem, C.W.B., Organ specificity and transcriptional control of metabolic routes revealed by expression QTL profiling of source–sink tissues in a segregating potato population, BMC Plant Biol., 2012, vol. 12: 17. doi 10.1186/1471-2229-12-17CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Paupiere, M.J., van Heusden, A.W., and Bovy, A.G., The metabolic basis of pollen thermo-tolerance: perspectives for breeding, Metabolites, 2014, vol. 4, pp. 889–920. doi 10.3390/metabo4040889CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 2016. Google Scholar
  19. 19.
    Gu, Z., Eils, R., and Schlesner, M., Complex heatmaps reveal patterns and correlations in multidimensional genomic data, Bioinformatics, 2016, vol. 32, pp. 2847–2849. doi 10.1093/bioinformatics/btw313CrossRefPubMedGoogle Scholar
  20. 20.
    Stacklies, W., Redestig, H., Scholz, M., Walther, D., and Selbig, J., pcaMethods—a bioconductor package providing PCA methods for incomplete data, Bioinformatics, 2007, vol. 23, pp. 1164–1167. doi 10.1093/bioinformatics/btm069CrossRefPubMedGoogle Scholar
  21. 21.
    Bartenhagen, C., RDRToolbox: A Package for Nonlinear Dimension Reduction with Isomap and LLE, Version 1.24.0, 2014.Google Scholar
  22. 22.
    Liaw, A. and Wiener, M., Classification and regression by random forest, R News, 2002, vol. 2, pp. 18–22.Google Scholar
  23. 23.
    Thevenot, E.A., Roux, A., Xu, Y., Ezan, E., and Junot, C., Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses, J. Proteome Res., 2015, vol. 14, pp. 3322–3335. doi 10.1021/acs.jproteome.5b00354CrossRefPubMedGoogle Scholar
  24. 24.
    Sliwka, J., Soltys-Kalina, D., Szajko, K., Wasilewicz-Flis, I., Strzelczyk-Zyta, D., Zimnoch-Guzowska, E., Jakuczun, H., and Marczewski, W., Mapping of quantitative trait loci for tuber starch and leaf sucrose contents in diploid potato, Theor. Appl. Genet., 2016, vol. 129, pp. 131–140. doi 10.1007/s00122-015-2615-9CrossRefPubMedGoogle Scholar
  25. 25.
    Ramadan, M.F. and Oraby, H.F., Fatty acids and bioactive lipids of potato cultivars: an overview, J. Oleo Sci., 2016, vol. 65, pp. 459–470. doi 10.5650/jos.ess16015CrossRefPubMedGoogle Scholar
  26. 26.
    Spychalla, J.P. and Desborough, S.L., Fatty acids, membrane permeability, and sugars of stored potato tubers, Plant Physiol., 1990, vol. 94, pp. 1207–1213. doi 10.1104/pp.94.3.1207CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Henriquez, M.A., Adam, L.R., and Daayf, F., Alteration of secondary metabolites' profiles in potato leaves in response to weakly and highly aggressive isolates of Phytophthora infestans, Plant Physiol. Biochem., 2012, vol. 57, pp. 8–14. doi 10.1016/j.plaphy.2012.04.013CrossRefPubMedGoogle Scholar
  28. 28.
    Jia, S., Wang, Y., Hu, J., Ding, Z., Liang, Q., Zhang, Y., and Wang, H., Mineral and metabolic profiles in tea leaves and flowers during flower development, Plant Physiol. Biochem., 2016, vol. 106, pp. 316–326. doi 10.1016/j.plaphy.2016.06.013CrossRefPubMedGoogle Scholar
  29. 29.
    Dobrovol'skaya, A.A., Rodionova, G.B., Voronkov, A.S., and Kovaleva, L.V., Sporophyte–gametophyte interactions between anther and male gametophyte in petunia, Russ. J. Plant Physiol., 2009, vol. 56, pp. 394–401.CrossRefGoogle Scholar
  30. 30.
    Uri, C., Juhász, Z., Polgár, Z., and Bánfalvi, Z., A GC–MS-based metabolomics study on the tubers of commercial potato cultivars upon storage, Food Chem., 2014, vol. 159, pp. 287–292. doi 10.1016/j.foodchem.2014.03.p010CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. K. Puzanskiy
    • 1
    • 2
  • V. V. Yemelyanov
    • 1
  • A. L. Shavarda
    • 1
    • 3
  • T. A. Gavrilenko
    • 1
    • 2
  • M. F. Shishova
    • 1
    • 2
    Email author
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Vavilov Federal Research CenterAll-Russia Institute of Genetic Resources of PlantsSt. PetersburgRussia
  3. 3.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations